Generalized Eigenvalue Problems (GEPs) encompass a range of interesting dimensionality reduction methods. Development of efficient stochastic approaches to these problems would allow them to scale to larger datasets. Canonical Correlation Analysis (CCA) is one example of a GEP for dimensionality reduction which has found extensive use in problems with two or more views of the data. Deep learning extensions of CCA require large mini-batch sizes, and therefore large memory consumption, in the stochastic setting to achieve good performance and this has limited its application in practice. Inspired by the Generalized Hebbian Algorithm, we develop an approach to solving stochastic GEPs in which all constraints are softly enforced by Lagrange multipliers. Then by considering the integral of this Lagrangian function, its pseudo-utility, and inspired by recent formulations of Principal Components Analysis and GEPs as games with differentiable utilities, we develop a game-theory inspired approach to solving GEPs. We show that our approaches share much of the theoretical grounding of the previous Hebbian and game theoretic approaches for the linear case but our method permits extension to general function approximators like neural networks for certain GEPs for dimensionality reduction including CCA which means our method can be used for deep multiview representation learning. We demonstrate the effectiveness of our method for solving GEPs in the stochastic setting using canonical multiview datasets and demonstrate state-of-the-art performance for optimizing Deep CCA.
翻译:通用电子价值问题(GEPs)包含一系列有趣的减少维度的方法。 开发高效的随机方法可以使这些问题升级到更大的数据集。 精密关联分析(CCA)是用于减少维度的GEP的一个实例,在两种或两种以上数据观点的问题中发现,它广泛用于减少维度的GEP。 深入的CEP扩展需要大小批量的尺寸,从而需要大量的记忆消耗,在随机环境中,实现良好的业绩,这限制了它在实践中的应用。 在通用的Hebbician Algorithm的启发下,我们开发了一种方法来解决所有这些问题。 在这种方法中,所有限制因素都由拉格兰特乘数乘数软地执行。 之后,通过考虑这一Lagrangia功能的内在完整性,其假实用性,以及最近制定的主要构件分析和GEP是不同用途的游戏,我们开发了一种博学的多功能来解决GEPs。 我们展示了我们先前的精深层智能GEP网络的理论基础基础,但是我们用了大部分的深度显示基础基础基础基础基础的Gebrical- colview 方法, 也允许我们使用了我们用于像 Hebbricallogivecolview的Gloveal 方法来减少我们用于用于用于用于普通的GIcial-colviducal- mecolviewcolview 的方法。