Oilfield production optimization is challenging due to subsurface model complexity and associated non-linearity, large number of control parameters, large number of production scenarios, and subsurface uncertainties. Optimization involves time-consuming reservoir simulation studies to compare different production scenarios and settings. This paper presents efficacy of two hybrid evolutionary optimization approaches for well control optimization of a waterflooding operation, and demonstrates their application using Olympus benchmark. A simpler, weighted sum of cumulative fluid (WCF) is used as objective function first, which is then replaced by net present value (NPV) of discounted cash-flow for comparison. Two popular evolutionary optimization algorithms, genetic algorithm (GA) and particle swarm optimization (PSO), are first used in standalone mode to solve well control optimization problem. Next, both GA and PSO methods are used with another popular optimization algorithm, covariance matrix adaptation-evolution strategy (CMA-ES), in hybrid mode. Hybrid optimization run is made by transferring the resulting population from one algorithm to the next as its starting population for further improvement. Approximately four thousand simulation runs are needed for standalone GA and PSO methods to converge, while six thousand runs are needed in case of two hybrid optimization modes (GA-CMA-ES and PSO-CMA-ES). To reduce turn-around time, commercial cloud computing is used and simulation workload is distributed using parallel programming. GA and PSO algorithms have a good balance between exploratory and exploitative properties, thus are able identify regions of interest. CMA-ES algorithm is able to further refine the solution using its excellent exploitative properties. Thus, GA or PSO with CMA-ES in hybrid mode yields better optimization result as compared to standalone GA or PSO algorithms.


翻译:由于地表下模型的复杂性和相关的非线性、大量控制参数、大量生产情景和次表面不确定性,优化油田生产是具有挑战性的。优化需要花费时间的储油层模拟研究,以比较不同的生产情景和设置。本文件介绍了两种混合进化优化方法的功效,以妥善控制水浸作业优化,并用Olympus基准来展示其应用。一种更简单、加权的累积液体(WCF)首先用作客观功能,然后由现成的贴现现金流净值(NPV)取代,以便进行比较。两种流行的进化优化算法、遗传算法和粒子温优化(PSO)首先用于独立模式,以便解决妥善控制优化优化问题。随后,GA和PSO两种混合的进化优化方法都用于另一种大众优化算法,即混合矩阵调整-适应-革命战略-革命战略(C-ES-ES-ES-SO)战略。混合优化是将由此产生的人口从一种算法,其初始的变现为不断改进。需要进行两次模拟结果,将GA和PSO-SO-SO-递化方法用于更精确的升级。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2019年5月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员