Mobile system-on-chips (SoCs) are growing in their complexity and heterogeneity (e.g., Arm's Big-Little architecture) to meet the needs of emerging applications, including games and artificial intelligence. This makes it very challenging to optimally manage the resources (e.g., controlling the number and frequency of different types of cores) at runtime to meet the desired trade-offs among multiple objectives such as performance and energy. This paper proposes a novel information-theoretic framework referred to as PaRMIS to create Pareto-optimal resource management policies for given target applications and design objectives. PaRMIS specifies parametric policies to manage resources and learns statistical models from candidate policy evaluation data in the form of target design objective values. The key idea is to select a candidate policy for evaluation in each iteration guided by statistical models that maximize the information gain about the true Pareto front. Experiments on a commercial heterogeneous SoC show that PaRMIS achieves better Pareto fronts and is easily usable to optimize complex objectives (e.g., performance per Watt) when compared to prior methods.
翻译:移动系统-芯片(SoCs)的复杂性和异质性(例如Arm的“大球”结构)日益增长,以满足新兴应用的需要,包括游戏和人工智能。这就使得以最佳的方式管理资源(例如控制不同类型核心的数量和频率)在运行时极具挑战性,以便实现业绩和能源等多重目标之间的预期取舍。本文件提出一个新的信息理论框架,称为PARMIS,为特定应用和设计目标创建最佳资源管理政策。PARMIS以目标设计目标值的形式,指定了资源管理的准度政策,并从候选政策评价数据中学习统计模型。关键的想法是选择一种候选政策,在每种循环中进行评价,以统计模型为指导,最大限度地增加关于真实Pareto的前端的信息收益。对商业多元性 SoC的实验表明,与以前的方法相比,Pareto战线的战线和最优化的复杂目标(例如,每个Watt的绩效)。