We study the statistical behaviour of quantum entanglement in bipartite systems over fermionic Gaussian states as measured by von Neumann entropy. The formulas of average von Neumann entropy with and without particle number constrains have been recently obtained, whereas the main results of this work are the exact yet explicit formulas of variances for both cases. For the latter case of no particle number constrain, the results resolve a recent conjecture on the corresponding variance. Different than existing methods in computing variances over other generic state models, the key ingredient in proving the results of this work relies on a new simplification framework. The framework consists of a set of new tools in simplifying finite summations of what we refer to as dummy summation and re-summation techniques. As a byproduct, the proposed framework leads to various new transformation formulas of hypergeometric functions.
翻译:我们研究的是冯纽曼(Von Neumann entropy)测量的在高斯河两极状态上的量系纠缠的统计行为。最近取得了平均的冯纽曼(Von Neumann)环球和无粒子数限制的公式,而这项工作的主要结果则是两种情况差异的精确而明确的公式。对于后一种情况,没有粒子数限制,结果解决了对相应差异的最近推测。与其他通用国家模型相比,计算差异的现有方法不同,证明这项工作结果的关键要素依赖于新的简化框架。该框架由一套新工具组成,用于简化我们所称的模拟总和和再合成技术的有限总和。作为副产品,拟议框架导致各种超几何函数的新转换公式。