In this technical report, we introduce our winning solution "HorizonLiDAR3D" for the 3D detection track and the domain adaptation track in Waymo Open Dataset Challenge at CVPR 2020. Many existing 3D object detectors include prior-based anchor box design to account for different scales and aspect ratios and classes of objects, which limits its capability of generalization to a different dataset or domain and requires post-processing (e.g. Non-Maximum Suppression (NMS)). We proposed a one-stage, anchor-free and NMS-free 3D point cloud object detector AFDet, using object key-points to encode the 3D attributes, and to learn an end-to-end point cloud object detection without the need of hand-engineering or learning the anchors. AFDet serves as a strong baseline in our winning solution and significant improvements are made over this baseline during the challenges. Specifically, we design stronger networks and enhance the point cloud data using densification and point painting. To leverage camera information, we append/paint additional attributes to each point by projecting them to camera space and gathering image-based perception information. The final detection performance also benefits from model ensemble and Test-Time Augmentation (TTA) in both the 3D detection track and the domain adaptation track. Our solution achieves the 1st place with 77.11% mAPH/L2 and 69.49% mAPH/L2 respectively on the 3D detection track and the domain adaptation track.


翻译:在这份技术报告中,我们为3D探测轨道和CVPR 2020 Waymo Open Dataset 挑战中域适应轨道提出了“HorizonLiDAR3D”的获胜解决方案。许多现有的3D对象探测器包括基于前方的锁定框设计,以核算不同规模和侧比及对象类别,将它的一般化能力限制在不同的数据集或域,并需要后处理(例如非最大禁止(NMS)。我们建议采用一个单级、无锚和无NMS的3D点云目标探测器AFDet,使用对象关键点来编码3D属性,并学习终端到终端点的云对象探测,而不需要手动工程或学习锚。AFDet作为我们成功解决方案的坚实基线,并在挑战期间对基准进行重大改进。具体地,我们设计更强大的网络,用密度和点画来强化点云数据。为了利用相机信息,我们将额外的属性附加/粘贴到每个点上,方法是分别将它们投射到摄像机空间和图像检测-D 3L 轨道 A 的轨道适应。最后性测试A 和轨道 3L 和轨道的测试A 的路径 的测试和轨道 的路径 以及我们1的轨道的测试结果的路径的测试和轨道的路径的测试结果的收益的收益收益收益。

0
下载
关闭预览

相关内容

专知会员服务
109+阅读 · 2020年3月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
5+阅读 · 2019年4月8日
DPOD: Dense 6D Pose Object Detector in RGB images
Arxiv
5+阅读 · 2019年2月28日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
8+阅读 · 2018年4月12日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关论文
Arxiv
5+阅读 · 2019年4月8日
DPOD: Dense 6D Pose Object Detector in RGB images
Arxiv
5+阅读 · 2019年2月28日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
8+阅读 · 2018年4月12日
Arxiv
7+阅读 · 2018年3月19日
Top
微信扫码咨询专知VIP会员