Projective Integration methods are explicit time integration schemes for stiff ODEs with large spectral gaps. In this paper, we show that all existing Projective Integration methods can be written as Runge-Kutta methods with an extended Butcher tableau including many stages. We prove consistency and order conditions of the Projective Integration methods using the Runge-Kutta framework. Spatially adaptive Projective Integration methods are included via partitioned Runge-Kutta methods. New time adaptive Projective Integration schemes are derived via embedded Runge-Kutta methods and step size variation while their stability, convergence, and error estimators are investigated numerically.
翻译:投影集成法是具有巨大光谱差距的硬体极分体的明确时间集成计划,在本文件中,我们表明所有现有的投影集成方法都可以写成龙格-库塔方法,包括一个延伸的布彻平板,包括许多阶段;我们证明使用龙格-库塔框架的投影集成方法的一致性和秩序条件;通过分布式龙格-库塔方法将空间适应性投影集成方法纳入其中;新的时间适应性投影集成计划是通过嵌入龙格-库塔方法和步骤大小变化产生的,同时用数字调查其稳定性、趋同性和误差估计器。