Equilibrium G/M/1-FIFO waiting times are exponentially distributed, as first proved by Smith (1953). For other client-sorting policies, such generality is not feasible. Assume that interarrival times are constant. Symbolics for the D/M/1-LIFO density are completely known; numerics for D/M/1-SIRO arise via an unpublished recursion due to Burke (1967). Consider a weighted sum of two costs, one from keeping clients waiting for treatment and the other from having the server idle. With this in mind, what is the optimal interarrival time and how does this depend on the choice of policy?
翻译:如Smith(1953年)首次证明的那样,Equilium G/M/1-FIFO的等待时间是指数分布的。对于其他客户分类政策来说,这种一般性是不可行的。假设抵达时间是恒定的。D/M/1-LIFO密度的符号是完全已知的;D/M/1-SIRO的数字是因Burke(1967年)的未公布的重复而出现的。考虑两种成本的加权总和,一种是让客户等待治疗,另一种是让服务器闲置。考虑到这一点,什么是最佳到达时间,这如何取决于政策选择?