We show sublinear-time algorithms for Max Cut and Max E2Lin$(q)$ on expanders in the adjacency list model that distinguishes instances with the optimal value more than $1-\varepsilon$ from those with the optimal value less than $1-\rho$ for $\rho \gg \varepsilon$. The time complexities for Max Cut and Max $2$Lin$(q)$ are $\widetilde{O}(\frac{1}{\phi^2\rho} \cdot m^{1/2+O(\varepsilon/(\phi^2\rho))})$ and $\widetilde{O}(\mathrm{poly}(\frac{q}{\phi\rho})\cdot {(mq)}^{1/2+O(q^6\varepsilon/\phi^2\rho^2)})$, respectively, where $m$ is the number of edges in the underlying graph and $\phi$ is its conductance. Then, we show a sublinear-time algorithm for Unique Label Cover on expanders with $\phi \gg \epsilon$ in the bounded-degree model. The time complexity of our algorithm is $\widetilde{O}_d(2^{q^{O(1)}\cdot\phi^{1/q}\cdot \varepsilon^{-1/2}}\cdot n^{1/2+q^{O(q)}\cdot \varepsilon^{4^{1.5-q}}\cdot \phi^{-2}})$, where $n$ is the number of variables. We complement these algorithmic results by showing that testing $3$-colorability requires $\Omega(n)$ queries even on expanders.
翻译:我们为 Max Cut 和 Max E2Lin$( q) 展示了对相邻列表模型中放大器的亚线性运算法。 在这种模型中, 最优值高于$1 瓦列普西隆美元和最优值低于$1 美元( rho$) 的示例中, 最大切值和最大2美元( q) 的时数复杂度为$( q)\\ varepsil@ O} (frac{ 1\\\\\\\ phie2\\\\\ rho}\ cdo} m) m1/2+O (\\ varepot $ (\\ valipel) (\\\\\\\\\\\\ rho) 美元 美元 美元 。 最优值中, 最优值的矩數值是 美元( =qrqrqr=qrational) 的數值。