Vertical federated learning (VFL), which enables multiple enterprises possessing non-overlapped features to strengthen their machine learning models without disclosing their private data and model parameters, has received increasing attention lately. Similar to other machine learning algorithms, VFL suffers from fairness issues, i.e., the learned model may be unfairly discriminatory over the group with sensitive attributes. To tackle this problem, we propose a fair VFL framework in this work. First, we systematically formulate the problem of training fair models in VFL, where the learning task is modeled as a constrained optimization problem. To solve it in a federated manner, we consider its equivalent dual form and develop an asynchronous gradient coordinate-descent ascent algorithm, where each data party performs multiple parallelized local updates per communication round to effectively reduce the number of communication rounds. We prove that the algorithm finds a $\delta$-stationary point of the dual objective in $\mathcal{O}(\delta^{-4})$ communication rounds under mild conditions. Finally, extensive experiments on three benchmark datasets demonstrate the superior performance of our method in training fair models.


翻译:纵向联合学习(VFL)使拥有非过度特征的多个企业能够加强其机器学习模式而无需披露其私人数据和模型参数,这种纵向联合学习(VFL)最近受到越来越多的关注。与其他机器学习算法一样,VFL也存在公平问题,即学习模式可能不公平地歧视具有敏感属性的群体。为了解决这一问题,我们提议在这项工作中建立一个公平的VFL框架。首先,我们系统地在VFL中制定培训公平模式的问题,在这种模式中,学习任务以有限的优化问题为模式。为了以联合方式解决这一问题,我们考虑其等效的双重形式,并开发一个无同步的梯度协调-白度天化算法,即每个数据方在每轮通信中进行多次平行的本地更新,以有效减少通信周期的数量。我们证明,在 $\mathcal{O} (\delta ⁇ 4} 4} 4} 4}通信回合中发现双重目标的固定点。最后,在温条件下,对三个基准数据集进行了广泛的实验,展示我们的方法在培训公平模型中的优异性表现。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月9日
Arxiv
2+阅读 · 2021年11月8日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
3+阅读 · 2020年5月1日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员