For a family $\mathcal F$, let $\mathcal D(\mathcal F)$ stand for the family of all sets that can be expressed as $F\setminus G$, where $F,G\in \mathcal F$. A family $\mathcal F$ is intersecting if any two sets from the family have non-empty intersection. In this paper, we study the following question: what is the maximum of $|\mathcal D(\mathcal F)|$ for an intersecting family of $k$-element sets? Frankl conjectured that the maximum is attained when $\mathcal F$ is the family of all sets containing a fixed element. We show that this holds if $n>50k\log k$ and $k>50$. At the same time, we provide a counterexample for $n< 4k.$


翻译:对于一个家庭 $\ mathcal F$, 请用$mathcal D (\ mathcal F) $ 表示所有组合的家庭, 可以以$F\ setminus G$表示, 其中, $F, G\ in\ mathcal F$ 。 家庭 $\ mathcal F$ 是交叉的, 如果家庭的任何两组家庭有非空的交叉点。 本文中我们研究以下问题: $mathcal D (\ mathcal F) $ 最多是 $k$( mathcal F) $( $ $ $ ) 用于一个 $k$ - 元素的交叉点是什么? Frankl 假设当$\ mathcal F$ 是包含固定元素的所有组合的家庭时, 最大是达到的。 我们显示, 如果 $> 50k\ log k$ 和 $> 50 。 同时, 我们为 $ < 4k$, 我们提供对应的 。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年7月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年8月7日
Arxiv
0+阅读 · 2021年8月5日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员