The spatio-temporal graph learning is becoming an increasingly important object of graph study. Many application domains involve highly dynamic graphs where temporal information is crucial, e.g. traffic networks and financial transaction graphs. Despite the constant progress made on learning structured data, there is still a lack of effective means to extract dynamic complex features from spatio-temporal structures. Particularly, conventional models such as convolutional networks or recurrent neural networks are incapable of revealing the temporal patterns in short or long terms and exploring the spatial properties in local or global scope from spatio-temporal graphs simultaneously. To tackle this problem, we design a novel multi-scale architecture, Spatio-Temporal U-Net (ST-UNet), for graph-structured time series modeling. In this U-shaped network, a paired sampling operation is proposed in spacetime domain accordingly: the pooling (ST-Pool) coarsens the input graph in spatial from its deterministic partition while abstracts multi-resolution temporal dependencies through dilated recurrent skip connections; based on previous settings in the downsampling, the unpooling (ST-Unpool) restores the original structure of spatio-temporal graphs and resumes regular intervals within graph sequences. Experiments on spatio-temporal prediction tasks demonstrate that our model effectively captures comprehensive features in multiple scales and achieves substantial improvements over mainstream methods on several real-world datasets.
翻译:时空平面图的学习正日益成为图形研究的一个越来越重要的对象。许多应用领域涉及高度动态的图形,其中时间信息至关重要,例如交通网络和金融交易图表。尽管在学习结构化数据方面不断取得进展,但仍缺乏从时空结构结构结构结构中提取动态复杂特征的有效手段。特别是,常规模型,如卷轴网络或经常神经网络等,无法在短期或长期内揭示时间模式,同时从时空平面图中探索当地或全球空间范围的空间属性。为了解决这一问题,我们设计了一个新型的多尺度结构,即Spatio-Tempor U-Net(ST-UNet),用于图形结构化的时间序列建模。在这个U形网络中,提议在时空域进行配对的取样作业:集合(ST-Pool)无法从空间的确定性偏差中将输入的图形图解析,同时通过平时时空图断断断断断连接,同时通过反复互换连接,同时根据以前在下层、无主机层主流的图像结构中有效恢复原始的正序结构,从而在原始的平序结构中恢复原始结构(ST-UL-Sloimal-Stobal-stolmabol-stal mabal masimstal res)。