Low-resolution infrared (IR) array sensors offer a low-cost, low-power, and privacy-preserving alternative to optical cameras and smartphones/wearables for social distance monitoring in indoor spaces, permitting the recognition of basic shapes, without revealing the personal details of individuals. In this work, we demonstrate that an accurate detection of social distance violations can be achieved processing the raw output of a 8x8 IR array sensor with a small-sized Convolutional Neural Network (CNN). Furthermore, the CNN can be executed directly on a Microcontroller (MCU)-based sensor node. With results on a newly collected open dataset, we show that our best CNN achieves 86.3% balanced accuracy, significantly outperforming the 61% achieved by a state-of-the-art deterministic algorithm. Changing the architectural parameters of the CNN, we obtain a rich Pareto set of models, spanning 70.5-86.3% accuracy and 0.18-75k parameters. Deployed on a STM32L476RG MCU, these models have a latency of 0.73-5.33ms, with an energy consumption per inference of 9.38-68.57{\mu}J.
翻译:低分辨率红外线(IR)阵列传感器为室内空间的社会远程监测提供了低成本、低功率和隐私保护替代品,以替代光学相机和智能手机/智能装置,用于室内空间的社会远程监测,允许识别基本形状,而不必透露个人的个人细节。在这项工作中,我们证明可以准确探测到社会远程违规现象,处理8x8IR阵列传感器的原始输出,并配有小型革命神经网络(CNN)。此外,CNN可直接在以微控制器为基础的传感器节点上执行。随着新收集的开放数据集的结果,我们显示我们最好的CNN实现了86.3%的平衡精确度,大大超过最先进的确定性算法所达到的61%。改变CNN的建筑参数,我们获得了一套丰富的Pareto模型,精确度达70.5-86.3%和0.18-75k参数。这些模型在STML476RG MCU上安装了0.73-5.33毫米的悬浮度,其能量消耗率为9.377毫米。