Joint synthesis of images and segmentation masks with generative adversarial networks (GANs) is promising to reduce the effort needed for collecting image data with pixel-wise annotations. However, to learn high-fidelity image-mask synthesis, existing GAN approaches first need a pre-training phase requiring large amounts of image data, which limits their utilization in restricted image domains. In this work, we take a step to reduce this limitation, introducing the task of one-shot image-mask synthesis. We aim to generate diverse images and their segmentation masks given only a single labelled example, and assuming, contrary to previous models, no access to any pre-training data. To this end, inspired by the recent architectural developments of single-image GANs, we introduce our OSMIS model which enables the synthesis of segmentation masks that are precisely aligned to the generated images in the one-shot regime. Besides achieving the high fidelity of generated masks, OSMIS outperforms state-of-the-art single-image GAN models in image synthesis quality and diversity. In addition, despite not using any additional data, OSMIS demonstrates an impressive ability to serve as a source of useful data augmentation for one-shot segmentation applications, providing performance gains that are complementary to standard data augmentation techniques. Code is available at https://github.com/ boschresearch/one-shot-synthesis
翻译:将图像和分解面罩与基因对抗网络(GANs)联合合成,有望减少收集图像数据所需的努力,以像素说明;然而,为了学习高纤维图像-图像合成,现有的GAN方法首先需要一个培训前阶段,需要大量图像数据,从而限制其在限制图像领域的使用;在这项工作中,我们迈出了一步来减少这一限制,引入了一次性图像-图像合成的任务。我们的目标是制作不同图像及其分解面罩,只给出一个标签示例,并假设与以前的模型相反,无法获取任何培训前数据。为此,在单一图像GANs最近的建筑发展启发下,我们引入了我们的OSMIS模型,这需要大量图像数据的合成,从而限制了其在限制图像领域中的使用。除了实现生成的面具的高忠诚外,OSMIS在图像合成质量和多样性方面,除了要形成一个单一的状态-艺术单一图像GAN模型外,我们还假定,与以前的任何模型不同,不能获取任何培训前数据。为此,在单一图像GANsimage GANs最近的建筑发展过程中,我们引入了我们的OSMISSIS模型模型模型模型模型模型,因此,我们可以将展示了一种基础化分析系统/扩展分析部分的数据应用能力。