项目名称: 非极性面AlN衬底材料的HVPE制备及缺陷控制机理研究

项目编号: No.61474133

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 无线电电子学、电信技术

项目作者: 张纪才

作者单位: 中国科学院苏州纳米技术与纳米仿生研究所

项目金额: 91万元

中文摘要: 深紫外光电子器件在民用和国防安全等方面具有巨大的应用前景。开发高性能深紫外光电子器件要求进一步降低材料中缺陷密度、器件的量子结构设计尽可能克服自发极化电场和压电极化电场带来的负面影响。因而对发展非极性面的高质量同质AlN衬底提出了迫切需求。本项目拟利用自主研发的高温氢化物气相外延(HVPE)设备,采用掩膜、刻蚀技术和侧向外延技术制备大尺寸非极性面AlN同质衬底材料。围绕上述目标,理论模拟与实验相结合,研究非极性面AlN衬底在制备过程中的各向异性应力的起源及演变机理,实现应力可控生长;系统研究非极性材料中的结构缺陷的产生和演变机理,探索降低结构缺陷密度的有效途径;探究非极性AlN材料中的光电特性,深入揭示其与结构缺陷的关联关系。掌握非极性材料生长的关键技术,制备出高质量非极性AlN衬底材料,为我国发展深紫外光电子器件、高频大功率微波器件奠定基础。

中文关键词: 氮化铝;非极性;缺陷;晶体生长;氢化物气相外延

英文摘要: Deep ultraviolet optoelectronic devices have great potential in civil and national defense applications. The development of such high-performance devices requires the high crystal quality and rational quantum structure to avoid the influence of the strong polarization electric field along [0001]. As a result, it urgently needs to develop high quality nonpolar AlN substrate. The proposed project will use home-made high-temperature hydride vapor phase epitaxy (HVPE) to grow large size nonpoler AlN substrate. The special mask, etching and epitaxial lateral overgrowth techniques will be used to obtain the high crystal quality and decrease the strain of epilayers. By the association of experimental result and theoretical simulation, the origin and development of anisotropic stress in nonpolar AlN thick epilayer will be studied deeply to control the strain during the high-speed HVPE growth. The origin and development of structural defects will be studied systematically and the effective method to decrease the defects will be developed. On this base, the optical and electrical properties will be studied deeply and their correlations with structural defects will be disclosed. From this reaserch, the critical scientific problems and growth techniques of nonpolar AlN substrate will be understood deeply. On these basis, the project will be accomplished and the high-quality nonpolar AlN substrate will be fabricated, which will give great support for the development of deep ultraviolet optoelectronic and high-frenquency high-power microwave devices of our country.

英文关键词: Aluminium nitride;non polar;defect;crystal growth;HVPE

成为VIP会员查看完整内容
0

相关内容

《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
40+阅读 · 2022年4月4日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
86+阅读 · 2021年8月8日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
26+阅读 · 2021年4月2日
小目标检测技术研究综述
专知会员服务
120+阅读 · 2020年12月7日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
19+阅读 · 2021年6月15日
A Survey on Edge Intelligence
Arxiv
51+阅读 · 2020年3月26日
Arxiv
10+阅读 · 2018年2月17日
小贴士
相关VIP内容
《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
40+阅读 · 2022年4月4日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
86+阅读 · 2021年8月8日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
26+阅读 · 2021年4月2日
小目标检测技术研究综述
专知会员服务
120+阅读 · 2020年12月7日
相关资讯
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员