Humans' continual learning (CL) ability is closely related to Stability Versus Plasticity Dilemma that describes how humans achieve ongoing learning capacity and preservation for learned information. The notion of CL has always been present in artificial intelligence (AI) since its births. This paper proposes a comprehensive review of CL. Different from previous reviews that mainly focus on the catastrophic forgetting phenomenon in CL, this paper surveys CL from a more macroscopic perspective based on the Stability Versus Plasticity mechanism. Analogous to biological counterpart, "smart" AI agents are supposed to i) remember previously learned information (information retrospection); ii) infer on new information continuously (information prospection:); iii) transfer useful information (information transfer), to achieve high-level CL. According to the taxonomy, evaluation metrics, algorithms, applications as well as some open issues are then introduced. Our main contributions concern i) rechecking CL from the level of artificial general intelligence; ii) providing a detailed and extensive overview on CL topics; iii) presenting some novel ideas on the potential development of CL.
翻译:人类持续学习的能力与稳定比重可塑性Dilemma(CL)密切相关,它描述了人类如何实现持续学习能力和保存学到的信息。自出生以来,人工智能(AI)始终存在CL的概念。本文件建议对CL进行全面审查。与以前主要侧重于CL灾难性遗忘现象的以往审查不同,本文根据稳定比重可塑性机制从更宏观的角度对CL进行了调查。对生物对应方的比较,“智能”AI代理商应该(i) 记住以前学到的信息(信息反射);ii) 不断推断新信息(信息前景:iii) 传递有用信息(信息转移),实现高水平的CL。然后介绍分类、评价指标、算法、应用以及一些未决问题。我们的主要贡献涉及:从人造一般情报水平上重新校准CL;ii) 对CL专题进行详细和广泛的概述;iii) 就CL的潜在发展提出一些新想法。