Automatic Speech Recognition (ASR) systems must be robust to the myriad types of noises present in real-world environments including environmental noise, room impulse response, special effects as well as attacks by malicious actors (adversarial attacks). Recent works seek to improve accuracy and robustness by developing novel Deep Neural Networks (DNNs) and curating diverse training datasets for them, while using relatively simple acoustic features. While this approach improves robustness to the types of noise present in the training data, it confers limited robustness against unseen noises and negligible robustness to adversarial attacks. In this paper, we revisit the approach of earlier works that developed acoustic features inspired by biological auditory perception that could be used to perform accurate and robust ASR. In contrast, Specifically, we evaluate the ASR accuracy and robustness of several biologically inspired acoustic features. In addition to several features from prior works, such as gammatone filterbank features (GammSpec), we also propose two new acoustic features called frequency masked spectrogram (FreqMask) and difference of gammatones spectrogram (DoGSpec) to simulate the neuro-psychological phenomena of frequency masking and lateral suppression. Experiments on diverse models and datasets show that (1) DoGSpec achieves significantly better robustness than the highly popular log mel spectrogram (LogMelSpec) with minimal accuracy degradation, and (2) GammSpec achieves better accuracy and robustness to non-adversarial noises from the Speech Robust Bench benchmark, but it is outperformed by DoGSpec against adversarial attacks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年10月31日
Arxiv
0+阅读 · 2024年10月31日
Arxiv
0+阅读 · 2024年10月30日
Arxiv
29+阅读 · 2023年2月10日
Arxiv
14+阅读 · 2021年7月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年10月31日
Arxiv
0+阅读 · 2024年10月31日
Arxiv
0+阅读 · 2024年10月30日
Arxiv
29+阅读 · 2023年2月10日
Arxiv
14+阅读 · 2021年7月20日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员