This paper presents and analyses a Constraint Energy Minimization Generalized Multiscale Finite Element Method (CEM-GMsFEM) for solving single-phase non-linear compressible flows in highly heterogeneous media. The construction of CEM-GMsFEM hinges on two crucial steps: First, the auxiliary space is constructed by solving local spectral problems, where the basis functions corresponding to small eigenvalues are captured. Then the basis functions are obtained by solving local energy minimization problems over the oversampling domains using the auxiliary space. The basis functions have exponential decay outside the corresponding local oversampling regions. The convergence of the proposed method is provided, and we show that this convergence only depends on the coarse grid size and is independent of the heterogeneities. An online enrichment guided by \emph{a posteriori} error estimator is developed to enhance computational efficiency. Several numerical experiments on a three-dimensional case to confirm the theoretical findings are presented, illustrating the performance of the method and giving efficient and accurate numerical.
翻译:本文提出了一种基于约束能量最小化广义多尺度有限元法(CEM-GMsFEM)来求解高度非均质介质中单相非线性可压缩流的方法,并对其进行了分析。CEM-GMsFEM方法的构建基于两个关键步骤:首先,通过解决局部谱问题来构建辅助空间,其中包括相应于小特征值的基函数。然后,利用辅助空间在超采样域上求解局部能量最小化问题来获取基函数。基函数在对应的局部超采样区域外具有指数衰减。提供了所提方法的收敛性,并表明该收敛性仅依赖于粗网格大小,而与非均质性无关。开发了一种在线增强技术,该技术由\emph{a posteriori}误差估计器引导,以提高计算效率。通过在三维情况下进行的多个数值实验,证实了理论发现,说明了该方法的性能,并给出了高效和准确的数值结果。