The multiple-network poroelasticity (MPET) equations describe deformation and pressures in an elastic medium permeated by interacting fluid networks. In this paper, we (i) place these equations in the theoretical context of coupled elliptic-parabolic problems, (ii) use this context to derive residual-based a posteriori error estimates and indicators for fully discrete MPET solutions and (iii) evaluate the performance of these error estimators in adaptive algorithms for a set of test cases: ranging from synthetic scenarios to physiologically realistic simulations of brain mechanics.
翻译:多网络孔径度(MPET)方程式描述在由交互流体网络渗透的弹性介质中变形和压力,在本文中,我们(一) 将这些方程式置于相交的椭圆parolic 问题的理论背景中,(二) 利用这一背景得出基于残余的事后误差估计和完全离散的MPET解决方案指标,(三) 评估这些误差测算器在一系列测试案例的适应性算法中的性能:从合成假想到脑力生理上现实的模拟。