Amongst Markov chain Monte Carlo algorithms, Hamiltonian Monte Carlo (HMC) is often the algorithm of choice for complex, high-dimensional target distributions; however, its efficiency is notoriously sensitive to the choice of the integration-time tuning parameter, $T$. When integrating both forward and backward in time using the same leapfrog integration step as HMC, the set of local maxima in the potential along a path, or apogees, is the same whatever point (position and momentum) along the path is chosen to initialise the integration. We present the Apogee to Apogee Path Sampler (AAPS), which utilises this invariance to create a simple yet generic methodology for constructing a path, proposing a point from it and accepting or rejecting that proposal so as to target the intended distribution. We demonstrate empirically that AAPS has a similar efficiency to HMC but is much more robust to the setting of its equivalent tuning parameter, a non-negative integer, $K$, the number of apogees that the path crosses.


翻译:在Markov连锁的蒙特卡洛算法中,汉密尔顿·蒙特卡洛(HMC)往往是选择复杂、高维目标分布的算法;然而,其效率对集成时间调制参数($T$)的选择具有臭名昭著的敏感性。当将前向和后向都与HMC同时结合时,使用与HMC相同的跃式集成步骤时,在一条路径上(或远地点)的一套潜在的本地最大值(位置和势头)与在路径上选择的相同的调制参数(位置和势头)相同。我们向Apogee路径采样器(APS)介绍远地点(APS),我们利用它来创建一条简单而通用的方法来构建一条路径,从中提出一个点,接受或拒绝这一提议,以便瞄准预定的分布。我们从经验上表明,AAPS具有与HMC相似的效率,但对于与其相应的调制参数的设置更有力得多,即非负整整值,$K$,即路径交叉的远地点的数目。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Signal Decomposition Using Masked Proximal Operators
Arxiv
0+阅读 · 2022年2月18日
Arxiv
0+阅读 · 2022年2月16日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
7+阅读 · 2018年12月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员