Low-Latency IoT applications such as autonomous vehicles, augmented/virtual reality devices and security applications require high computation resources to make decisions on the fly. However, these kinds of applications cannot tolerate offloading their tasks to be processed on a cloud infrastructure due to the experienced latency. Therefore, edge computing is introduced to enable low latency by moving the tasks processing closer to the users at the edge of the network. The edge of the network is characterized by the heterogeneity of edge devices forming it; thus, it is crucial to devise novel solutions that take into account the different physical resources of each edge device. In this paper, we propose a resource representation scheme, allowing each edge device to expose its resource information to the supervisor of the edge node through the mobile edge computing application programming interfaces proposed by European Telecommunications Standards Institute. The information about the edge device resource is exposed to the supervisor of the EN each time a resource allocation is required. To this end, we leverage a Lyapunov optimization framework to dynamically allocate resources at the edge devices. To test our proposed model, we performed intensive theoretical and experimental simulations on a testbed to validate the proposed scheme and its impact on different system's parameters. The simulations have shown that our proposed approach outperforms other benchmark approaches and provides low latency and optimal resource consumption.
翻译:低通度 IOT 应用程序, 如自主车辆、 增强/虚拟现实装置 和安全应用程序等低通度 IOT 应用程序, 需要大量计算资源才能在飞天上作出决定。 但是, 此类应用程序无法容忍将任务卸载到云层基础设施中处理, 因为有经验的悬浮。 因此, 引入了边缘计算, 通过将任务处理更接近网络边缘的用户, 使任务处理更接近网络边缘的用户, 使任务处理更接近网络边缘的特征是形成网络的边缘装置的异质性; 因此, 设计考虑到每个边缘装置不同物理资源的新解决方案至关重要 。 在本文中, 我们提出了一个资源代表方案, 允许每个边缘装置通过欧洲电信标准研究所提议的移动边缘计算应用程序界面, 向边缘节点的主管披露其资源信息。 有关边缘装置资源的信息每次需要向网络边缘装置的主管披露一次资源分配。 为此, 我们利用Lyapunov 优化框架来动态地分配边缘装置的资源 。 为了测试我们提议的模型, 我们进行了密集的理论和实验性模拟, 测试在测试平台上展示了每个边缘装置上显示最佳模型的方法, 展示了我们所显示的最优度 。