We consider the problem of estimating expectations with respect to a target distribution with an unknown normalizing constant, and where even the unnormalized target needs to be approximated at finite resolution. This setting is ubiquitous across science and engineering applications, for example in the context of Bayesian inference where a physics-based model governed by an intractable partial differential equation (PDE) appears in the likelihood. A multi-index Sequential Monte Carlo (MISMC) method is used to construct ratio estimators which provably enjoy the complexity improvements of multi-index Monte Carlo (MIMC) as well as the efficiency of Sequential Monte Carlo (SMC) for inference. In particular, the proposed method provably achieves the canonical complexity of MSE$^{-1}$, while single level methods require MSE$^{-\xi}$ for $\xi>1$. This is illustrated on examples of Bayesian inverse problems with an elliptic PDE forward model in $1$ and $2$ spatial dimensions, where $\xi=5/4$ and $\xi=3/2$, respectively. It is also illustrated on a more challenging log Gaussian process models, where single level complexity is approximately $\xi=9/4$ and multilevel Monte Carlo (or MIMC with an inappropriate index set) gives $\xi = 5/4 + \omega$, for any $\omega > 0$, whereas our method is again canonical.
翻译:本文考虑在存在未知标准化常数的情况下,用有限分辨率近似来估计目标分布的期望。这种情况在科学和工程应用中都很普遍,例如在贝叶斯推断中,可能存在由一个不可解的偏微分方程(PDE)控制的基于物理的模型出现在似然中。我们使用多指标顺序蒙特卡罗(MISMC)方法来构造比率估计器,它们可以证明具有多指标蒙特卡罗(MIMC)的复杂度优势,同时具有顺序蒙特卡罗(SMC)在推断中的效率。特别地,所提出的方法可以证明实现MSE$^{-1}$的标准复杂度,而单层方法需要MSE$^{-\xi}$,其中$\xi>1$。我们在具有椭圆型PDE前向模型的贝叶斯反问题的一维和二维空间维度上说明了这一点,其中$\xi=5/4$和$\xi=3/2$,并在更具挑战性的对数高斯过程模型上进行了说明。在这种情况下,单层复杂度约为$\xi=9/4$,多层蒙特卡罗(MIMC)(或采用不当指标集的MIMC)将给出$\xi=5/4+\omega$,其中$\omega>0$,而我们的方法是标准复杂度。