The tremendous development in deep learning has led facial expression recognition (FER) to receive much attention in the past few years. Although 3D FER has an inherent edge over its 2D counterpart, work on 2D images has dominated the field. The main reason for the slow development of 3D FER is the unavailability of large training and large test datasets. Recognition accuracies have already saturated on existing 3D emotion recognition datasets due to their small gallery sizes. Unlike 2D photographs, 3D facial scans are not easy to collect, causing a bottleneck in the development of deep 3D FER networks and datasets. In this work, we propose a method for generating a large dataset of 3D faces with labeled emotions. We also develop a deep convolutional neural network(CNN) for 3D FER trained on 624,000 3D facial scans. The test data comprises 208,000 3D facial scans.


翻译:深层学习的巨大发展使面部表情识别(FER)在过去几年中引起了人们的极大关注。 虽然 3D FER 在其 2D 对应网络和数据集的开发中具有内在的优势,但2D 图像方面的工作占据了这个领域的主要位置。 3D FER 开发缓慢的主要原因是缺乏大型培训和大型测试数据集。 现有的3D 情感识别数据集由于幅员小,已经饱和了现有的3D 情感识别数据集。 与 2D 相片不同, 3D 面部扫描不容易收集, 导致开发深3D FER 网络和数据集的瓶颈。 在这项工作中,我们提出了一个方法, 生成一个带有标签情感的3D 脸的大型数据集。 我们还开发了一个3D 3D 3D 3D 脸色扫描的深革命神经网络(CNN ) 。 测试数据包括 208 000 3D 3D 面部面部扫描。

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月7日
Arxiv
7+阅读 · 2021年8月25日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员