In the paper, we study a class of useful minimax optimization problems on Riemanian manifolds and propose a class of Riemanian gradient-based methods to solve these minimax problems. Specifically, we propose a Riemannian gradient descent ascent (RGDA) algorithm for the deterministic minimax optimization. Moreover, we prove that our RGDA has a sample complexity of $O(\kappa^2\epsilon^{-2})$ for finding an $\epsilon$-stationary point of the nonconvex strongly-concave minimax problems, where $\kappa$ denotes the condition number. At the same time, we introduce a Riemannian stochastic gradient descent ascent (RSGDA) algorithm for the stochastic minimax optimization. In the theoretical analysis, we prove that our RSGDA can achieve a sample complexity of $O(\kappa^4\epsilon^{-4})$. To further reduce the sample complexity, we propose an accelerated Riemannian stochastic gradient descent ascent (Acc-RSGDA) algorithm based on the variance-reduced technique. We prove that our Acc-RSGDA algorithm achieves a lower sample complexity of $\tilde{O}(\kappa^{4}\epsilon^{-3})$. Extensive experimental results on the robust distributional optimization and Deep Neural Networks (DNNs) training over Stiefel manifold demonstrate efficiency of our algorithms.


翻译:在论文中,我们研究了一系列关于里马尼亚地块的有用的小型最大优化问题,并提出了一系列基于里马尼亚梯度的基于里马尼亚梯度的方法来解决这些小型问题。具体地说,我们提议为确定性小型马克斯优化采用里曼尼梯度梯度梯度梯度下降(RGDA)算法(RGDA)算法(RGDA)算法。此外,我们证明我们的REGDA的样本复杂性为$O(\kappa2\\epsilon ⁇ 2}(2)美元),以寻找一个非Conex 强可调小型马克斯 的固定点。为了进一步降低样本复杂性,我们提议加速里曼尼卡普亚深度梯度梯度下降(RGD)算法(Acceptroupical-alislationalislationalislational 4}(SBErationalian sloia-rational-rassional)算法(Acc_SDrevia-Sqrational-rational-roislationaltra)算法(SDreval_Sqrevational_Sqlational_Sqlationxxxxxx),以证明我们的低级的低级变缩缩算法(A)算方法。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月14日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
12+阅读 · 2021年3月24日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员