Understanding and comparing distributions of data (e.g., regarding their modes, shapes, or outliers) is a common challenge in many scientific disciplines. Typically, this challenge is addressed using side-by-side comparisons of histograms or density plots. However, comparing multiple density plots is mentally demanding. Uniform histograms often represent distributions imprecisely since missing values, outliers, or modes are hidden by a grouping of equal size. In this paper, a novel type of overview visualization for the comparison of univariate data distributions is presented: AccuStripes (i.e., accumulated stripes) is a new visual metaphor encoding accumulations of data distributions according to adaptive binning using color coded stripes of irregular width. We provide detailed insights about challenges of binning. Specifically, we explore different adaptive binning concepts such as Bayesian Blocks binning and Jenks Natural Breaks binning for the computation of binning boundaries, in terms of their capabilities to represent the datasets as accurately as possible. In addition, we discuss issues arising with the representation of designs for the comparative visualization of distributions: To allow for a comparison of many distributions, their accumulated representations are plotted below each other in a stacked mode. Based on our findings, we propose three different layouts for comparative visualization of multiple distributions. The usefulness of AccuStripes is investigated using a statistical evaluation of the binning methods. Using a similarity metric from cluster analysis, it is shown, which binning method statistically yields the best grouping results. Through a user study we evaluate, which binning strategy visually represents the distribution in the most intuitive form and investigate, which layout allows the user the comparison of many distributions in the most effortless way.


翻译:对数据分布的理解和比较(例如,关于其模式、形状或外部值)在许多科学学科中是一个常见的挑战。 通常, 要应对这项挑战, 需要用直方图或密度图的侧侧比较。 但是, 比较多重密度地块是心理上的要求。 统一的直方图通常代表不精确的分布, 因为缺少的值、 外方或模式是由相同大小的组合隐藏的。 在本文中, 展示了一种用于比较未读数据分布的全局直观直观视觉( 即累积的条纹) : AccuStripe (即累积的条纹) 是一个新的视觉隐喻性数据分布的累积, 使用非常规的平面图进行调整 。 具体地说, 我们探索不同的适应性硬盘概念, 如 Bayesian blocks binning 和 Jenks Ribreads binning binning binning, 以其能力来尽可能准确地代表硬盘数据分布。 此外, 我们讨论数据流流流流流流流流分配中出现的问题, 使用比重的统计分布图分析显示显示的多层次分布式分布图分析中显示的对比分析 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Coeffects for Sharing and Mutation
Arxiv
0+阅读 · 2022年9月15日
Arxiv
23+阅读 · 2021年10月11日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
14+阅读 · 2020年12月17日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员