In this paper, we consider a zero-order stochastic oracle model of estimating definite integrals. In this model, integral estimation methods may query an oracle function for a fixed number of noisy values of the integrand function and use these values to produce an estimate of the integral. We first show that the information-theoretic error lower bound for estimating the integral of a $d$-dimensional function over a region with $l_\infty$ radius $r$ using at most $T$ queries to the oracle function is $\Omega(2^d r^{d+1}\sqrt{d/T})$. Additionally, we find that the Gaussian Quadrature method under the same model achieves a rate of $O(2^{d}r^d/\sqrt{T})$ for functions with zero fourth and higher-order derivatives with respect to individual dimensions, and for Gaussian oracles, this rate is tight. For functions with nonzero fourth derivatives, the Gaussian Quadrature method achieves an upper bound which is not tight with the information-theoretic lower bound. Therefore, it is not minimax optimal, so there is space for the development of better integral estimation methods for such functions.


翻译:在本文中, 我们考虑对确定整体值进行估算的零顺序随机值模型。 在这个模型中, 集成估算方法可以对恒星函数中固定数量的噪声值进行神话函数查询, 并使用这些数值来估算整体值。 我们首先显示, 信息- 理论误差对于估算一个区域以美元为单位的美元维值函数的有机值, 以美元表示半径半径为单位, 使用最多T$为美元查询的半径值为$@Omega( 2 ⁇ d r ⁇ d+1 ⁇ sqrt{d/T})$。 此外, 我们发现, 在同一模型下, 高斯二次方位法对于以美元为单位的零四级和更高级衍生物的函数来说, 信息- 半径半径半径值为$( $2 ⁇ d r ⁇ d+1 ⁇ sqrt{d/T} 。 此外, 我们发现, 高斯二次计算法的顶端函数的高度值为$O( 2 ⁇ d) rd/\ xrt} 。 对于单个值计算方法对于单个值而言, 最差值并非最差值, 。 。 。 。 最差值是 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
44+阅读 · 2020年9月11日
专知会员服务
53+阅读 · 2020年9月7日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
12+阅读 · 2019年12月19日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月13日
VIP会员
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员