The recently proposed L-lag coupling for unbiased Markov chain Monte Carlo (MCMC) calls for a joint celebration by MCMC practitioners and theoreticians. For practitioners, it circumvents the thorny issue of deciding the burn-in period or when to terminate an MCMC sampling process, and opens the door for safe parallel implementation. For theoreticians, it provides a powerful tool to establish elegant and easily estimable bounds on the exact error of an MCMC approximation at any finite number of iterates. A serendipitous observation about the bias-correcting term leads us to introduce naturally available control variates into the L-lag coupling estimators. In turn, this extension enhances the coupled gains of L-lag coupling, because it results in more efficient unbiased estimators, as well as a better bound on the total variation error of MCMC iterations, albeit the gains diminish as L increases. Specifically, the new upper bound is theoretically guaranteed to never exceed the one given previously. We also argue that L-lag coupling represents a coupling for the future, breaking from the coupling-from-the-past type of perfect sampling, by reducing the generally unachievable requirement of being perfect to one of being unbiased, a worthwhile trade-off for ease of implementation in most practical situations. The theoretical analysis is supported by numerical experiments that show tighter bounds and a gain in efficiency when control variates are introduced.


翻译:最近提出的对公正Markov连锁公司Monte Carlo(MCMC)的L-lag 结合,要求MCMC执业者和理论学家共同庆祝。对于执业者来说,这回避了决定燃烧期或何时终止MCMC抽样过程的棘手问题,打开了安全平行执行的大门。对于理论学家来说,它提供了一个强大的工具,可以在任何数量有限的迭代者中,对MCMC近似的准确错误建立优雅和易于估量的界限。对纠正偏差的术语的偶然观察,导致我们对L-lag混合估计器引入自然可用的控制变异。反过来,这一扩展又增加了L-lag混合的结合,因为它导致更高效的无偏向性估算器,并且对MC中反复出现的完全差异错误有更好的约束,尽管随着L的增加而收益减少。具体地说,新的上限在理论上保证永远不会超过先前给出的。我们还认为,L-lag-col-coupol 代表着未来局面的不可组合,从最精确的理论性分析中打破了最精确性、最精确性、最精确性、最精确性、最可靠地展示性、最精确性地展示性地分析,通过从一种最接近性地展示性地展示性地展示性地展示性地展示性分析,从而降低、最精确性、最精确性、最精确性地展示、最精确性地展示性地展示性地展示性地展示性地展示性地展示性地分析。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
专知会员服务
61+阅读 · 2020年3月4日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
已删除
将门创投
5+阅读 · 2019年9月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Arxiv
0+阅读 · 2021年6月8日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2019年9月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Top
微信扫码咨询专知VIP会员