Police departments around the world have been experimenting with forms of place-based data-driven proactive policing for over two decades. Modern incarnations of such systems are commonly known as hot spot predictive policing. These systems predict where future crime is likely to concentrate such that police can allocate patrols to these areas and deter crime before it occurs. Previous research on fairness in predictive policing has concentrated on the feedback loops which occur when models are trained on discovered crime data, but has limited implications for models trained on victim crime reporting data. We demonstrate how differential victim crime reporting rates across geographical areas can lead to outcome disparities in common crime hot spot prediction models. Our analysis is based on a simulation patterned after district-level victimization and crime reporting survey data for Bogot\'a, Colombia. Our results suggest that differential crime reporting rates can lead to a displacement of predicted hotspots from high crime but low reporting areas to high or medium crime and high reporting areas. This may lead to misallocations both in the form of over-policing and under-policing.


翻译:20多年来,世界各地警察部门一直在尝试以基于地点的数据驱动的预防性治安行动,这种系统的现代演化通常被称为热点预测治安,这些系统预测今后在哪些地方可能集中犯罪,以便警察能够在这些地区进行巡逻,并在犯罪发生之前阻止犯罪。以前关于预测治安的公正性的研究集中于在对已发现犯罪数据进行模型培训时出现的反馈回路,但对经培训的被害人犯罪报告数据模型的影响有限。我们表明,不同地理区域的被害人犯罪报告率可能导致共同犯罪热点预测模型中的结果差异。我们的分析基于在哥伦比亚波哥大地区一级受害和犯罪报告调查数据之后的模拟模式。我们的结果表明,不同的犯罪报告率可能导致预期热点从高犯罪率但低报告区转移到高犯罪或中犯罪和高报告区。这可能导致以过度治安和低政策化的形式出现错位。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月28日
Learning Discriminative Model Prediction for Tracking
Arxiv
3+阅读 · 2018年2月20日
VIP会员
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员