Temporal action detection aims to recognize the action category and determine the starting and ending time of each action instance in untrimmed videos. The mixed methods have achieved remarkable performance by simply merging anchor-based and anchor-free approaches. However, there are still two crucial issues in the mixed framework: (1) Brute-force merging and handcrafted anchors design affect the performance and practical application of the mixed methods. (2) A large number of false positives in action category predictions further impact the detection performance. In this paper, we propose a novel Boundary Discretization and Reliable Classification Network (BDRC-Net) that addresses the above issues by introducing boundary discretization and reliable classification modules. Specifically, the boundary discretization module (BDM) elegantly merges anchor-based and anchor-free approaches in the form of boundary discretization, avoiding the handcrafted anchors design required by traditional mixed methods. Furthermore, the reliable classification module (RCM) predicts reliable action categories to reduce false positives in action category predictions. Extensive experiments conducted on different benchmarks demonstrate that our proposed method achieves favorable performance compared with the state-of-the-art. For example, BDRC-Net hits an average mAP of 68.6% on THUMOS'14, outperforming the previous best by 1.5%. The code will be released at https://github.com/zhenyingfang/BDRC-Net.
翻译:暂无翻译