Approximating probability distributions can be a challenging task, particularly when they are supported over regions of high geometrical complexity or exhibit multiple modes. Annealing can be used to facilitate this task which is often combined with constant a priori selected increments in inverse temperature. However, using constant increments limit the computational efficiency due to the inability to adapt to situations where smooth changes in the annealed density could be handled equally well with larger increments. We introduce AdaAnn, an adaptive annealing scheduler that automatically adjusts the temperature increments based on the expected change in the Kullback-Leibler divergence between two distributions with a sufficiently close annealing temperature. AdaAnn is easy to implement and can be integrated into existing sampling approaches such as normalizing flows for variational inference and Markov chain Monte Carlo. We demonstrate the computational efficiency of the AdaAnn scheduler for variational inference with normalizing flows on a number of examples, including density approximation and parameter estimation for dynamical systems.
翻译:近似概率分布可能是一项具有挑战性的任务, 特别是在高几何复杂区域或呈现多种模式的区域支持这些区域时。 Annaaling可用于促进这项任务, 这项工作往往与在反温中经常的先验性选择增量相结合。 但是, 使用恒定增量限制了计算效率, 原因是无法适应与较大增量同等可处理的肛交密度平稳变化的情况。 我们引入了适应性排期程序AdaAnn, 该程序根据两个分布在足够接近反射温度的情况下的预期变化自动调整温度增量。 Adann很容易实施, 并且可以纳入现有的取样方法, 例如变异性发酵的正常流动和Markov 链 Monte Carlo 。 我们展示了Adann排程的计算效率, 变异性推断与若干例子的正常流动, 包括动态系统的密度近近值和参数估计。