Dynamic Searchable Encryption (DSE) has emerged as a solution to efficiently handle and protect large-scale data storage in encrypted databases (EDBs). Volume leakage poses a significant threat, as it enables adversaries to reconstruct search queries and potentially compromise the security and privacy of data. Padding strategies are common countermeasures for the leakage, but they significantly increase storage and communication costs. In this work, we develop a new perspective to handle volume leakage. We start with distinct search and further explore a new concept called \textit{distinct} DSE (\textit{d}-DSE). We also define new security notions, in particular Distinct with Volume-Hiding security, as well as forward and backward privacy, for the new concept. Based on \textit{d}-DSE, we construct the \textit{d}-DSE designed EDB with related constructions for distinct keyword (d-KW-\textit{d}DSE), keyword (KW-\textit{d}DSE), and join queries (JOIN-\textit{d}DSE) and update queries in encrypted databases. We instantiate a concrete scheme \textsf{BF-SRE}, employing Symmetric Revocable Encryption. We conduct extensive experiments on real-world datasets, such as Crime, Wikipedia, and Enron, for performance evaluation. The results demonstrate that our scheme is practical in data search and with comparable computational performance to the SOTA DSE scheme (\textsf{MITRA}*, \textsf{AURA}) and padding strategies (\textsf{SEAL}, \textsf{ShieldDB}). Furthermore, our proposal sharply reduces the communication cost as compared to padding strategies, with roughly 6.36 to 53.14x advantage for search queries.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员