Value-based deep Reinforcement Learning (RL) algorithms suffer from the estimation bias primarily caused by function approximation and temporal difference (TD) learning. This problem induces faulty state-action value estimates and therefore harms the performance and robustness of the learning algorithms. Although several techniques were proposed to tackle, learning algorithms still suffer from this bias. Here, we introduce a technique that eliminates the estimation bias in off-policy continuous control algorithms using the experience replay mechanism. We adaptively learn the weighting hyper-parameter beta in the Weighted Twin Delayed Deep Deterministic Policy Gradient algorithm. Our method is named Adaptive-WD3 (AWD3). We show through continuous control environments of OpenAI gym that our algorithm matches or outperforms the state-of-the-art off-policy policy gradient learning algorithms.


翻译:基于价值的深强化学习算法受到主要由功能近似值和时间差异(TD)学习引起的估计偏差的偏差。 这个问题导致州- 行动价值估计有误, 从而损害学习算法的性能和稳健性。 虽然提出了几种方法要解决, 学习算法仍然受到这种偏差的影响 。 在这里, 我们引入一种技术, 利用经验重放机制消除非政策性连续控制算法的估计偏差 。 我们适应性地学习了“ 双重重重延迟的深层确定性政策梯度算法” 中的超参数贝。 我们的方法叫做适应- WD3 (AWD3)。 我们通过OpenAI 健身房的持续控制环境显示, 我们的算法匹配或优于最先进的离政策梯度学习算法。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
52+阅读 · 2020年9月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最前沿:深度解读Soft Actor-Critic 算法
极市平台
53+阅读 · 2019年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
On the Estimation Bias in Double Q-Learning
Arxiv
0+阅读 · 2022年1月14日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
52+阅读 · 2020年9月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
最前沿:深度解读Soft Actor-Critic 算法
极市平台
53+阅读 · 2019年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员