The aim of this paper is to determine the algebraic structure of multidimensional cyclic codes over a finite chain ring $\mathfrak{R}$. An algorithm to find the generator polynomials of $n$ dimensional ($n$D) cyclic codes of length $m_{1}m_{2}\dots m_{n}$ over $\mathfrak{R}$ has been developed using the generator polynomials of cyclic codes over $\mathfrak{R}$. Additionally, the generators of $n$D cyclic codes with length $m_{1}m_{2}\dots m_{n}$ over $\mathfrak{R}$ have been obtained as separable polynomials for the case $q\equiv 1(mod~ m_{j}), j\geq 2$, where $q=p^{r}$ is the cardinality of residue field of $\mathfrak{R}$.
翻译:本文的目的是确定一个固定链环$\mathfrak{R}$的多环值值值结构。 一种算法, 用以找到一个长度为$m{%1}m<unk> 2<unk> 2<unk> dosts m<unk> n}$mathfrak{R}$的发电机多环值值值值。 此外, 以$m{1}m<unk> 2<unk> 2<unk> dosts m<unk> n}为长度的元值多环值值的发电机多环值值值值值, 以美元=equiv1美元(mod~m<unk> j})为单位, j\ge 2美元为单位, 其中美元=p<unk> r}是美元=mathfrak{R}的残余领域之主要。</s>