项目名称: 一维石墨烯纳米条带上转换基础研究

项目编号: No.51472170

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 黄青松

作者单位: 四川大学

项目金额: 80万元

中文摘要: 石墨烯中的载流子为无质量的Dirac 费米子,在电子转移和能量转移上具有独特的性质,从而使得光子激发的反斯托克斯能量输出成为可能。然而完美的石墨烯是零带隙的,而荧光性质一般认为与带隙有关。由于量子限域效应和边界效应,石墨烯量子点的带隙可调控,因此目前有关石墨烯上转换的研究,多集中在碳量子点上。碳量子点的上转换发光很弱,在非相干光源激发下,其上转换发光几乎可以忽略。然而,碳量子点是否等同于石墨烯量子点?石墨烯量子点是否代表石墨烯真正的发光性质? 本研究分别通过非相干光源和相干脉冲激光光源激发,对近自由和外延石墨烯纳米条带进行调控,探索其宽度、长宽比、掺杂、层间耦合作用以及手性对一维石墨烯上转换的影响,认识一维石墨烯在不同光源激发下的上转换机理。最终验证和实现一维石墨烯上转换的可操控性,制备出稳定的上转换新材料。

中文关键词: 石墨烯;纳米材料;纳米条带;上转换;荧光

英文摘要: The charge carriers of graphene behave like massless Dirac Fermion, and its astonished electronic properties make the transfer of charges and energy easier than most other materials,and have a potential to be anti-stokes emission.The band gap of perfect graphene sheet approaches zero, while the fluorescence properties of translation are much related to its energy level.Since the band gap of graphen quantum dots(GQDs) derives from quantum confinement,the research on upconversion of graphene are focused on carbon quantum dots(CQDs).If the excitation light is noncoherent sunlight,the upconversion emission intensity of CQDs is very low and almost zero.However, can CQDs equalto GQDs? and can the GQDs represent graphene? Our research presents two routes to upconversion of graphene, 1)quasi-free standing graphene nanoribbons(GNRs) and 2) epitaxial GNRs. By tuning width of GNRs,aspect ratio , dopant, coupling between the adjacent layers and chirality of edges, we try to build up a relationship between the upconversion and both the boundary chirality and inner topological defects.To this end, we should have a deep understanding of the intrensic upconversion of graphene excited by noncoherent light and pulsed laser respectively. Finally, a high quantum productivity and intense emission of photon can be reached.

英文关键词: Graphene;Nano Materials;Nanoribbons;Upconversion;PL spectrum

成为VIP会员查看完整内容
0

相关内容

专知会员服务
30+阅读 · 2021年8月16日
【NeurIPS2020】图神经网络中的池化再思考
专知会员服务
52+阅读 · 2020年10月25日
【ICML2020】对比多视角表示学习
专知会员服务
53+阅读 · 2020年6月28日
【CVPR2020-港中文】 图像识别中的自注意力探索
专知会员服务
56+阅读 · 2020年4月29日
损失函数技术总结及Pytorch使用示例
极市平台
3+阅读 · 2022年4月10日
哪个数码技术你用了就很难舍弃?
ZEALER订阅号
0+阅读 · 2022年3月6日
实践教程 | 轻松入门模型转换和可视化
极市平台
0+阅读 · 2022年3月5日
6.7英寸的iPhone 14 Max可能采用120Hz的LTPO屏幕
威锋网
0+阅读 · 2021年12月28日
iPhone 14 Pro/Pro Max或将包含USB-C接口
威锋网
0+阅读 · 2021年11月21日
已删除
将门创投
12+阅读 · 2019年7月1日
博客 | 机器学习中的数学基础(凸优化)
AI研习社
14+阅读 · 2018年12月16日
一种关键字提取新方法
1号机器人网
21+阅读 · 2018年11月15日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
27+阅读 · 2018年4月12日
Arxiv
11+阅读 · 2018年3月23日
Arxiv
12+阅读 · 2018年1月12日
小贴士
相关主题
相关VIP内容
专知会员服务
30+阅读 · 2021年8月16日
【NeurIPS2020】图神经网络中的池化再思考
专知会员服务
52+阅读 · 2020年10月25日
【ICML2020】对比多视角表示学习
专知会员服务
53+阅读 · 2020年6月28日
【CVPR2020-港中文】 图像识别中的自注意力探索
专知会员服务
56+阅读 · 2020年4月29日
相关资讯
损失函数技术总结及Pytorch使用示例
极市平台
3+阅读 · 2022年4月10日
哪个数码技术你用了就很难舍弃?
ZEALER订阅号
0+阅读 · 2022年3月6日
实践教程 | 轻松入门模型转换和可视化
极市平台
0+阅读 · 2022年3月5日
6.7英寸的iPhone 14 Max可能采用120Hz的LTPO屏幕
威锋网
0+阅读 · 2021年12月28日
iPhone 14 Pro/Pro Max或将包含USB-C接口
威锋网
0+阅读 · 2021年11月21日
已删除
将门创投
12+阅读 · 2019年7月1日
博客 | 机器学习中的数学基础(凸优化)
AI研习社
14+阅读 · 2018年12月16日
一种关键字提取新方法
1号机器人网
21+阅读 · 2018年11月15日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
相关论文
微信扫码咨询专知VIP会员