Path representations are critical in a variety of transportation applications, such as estimating path ranking in path recommendation systems and estimating path travel time in navigation systems. Existing studies often learn task-specific path representations in a supervised manner, which require a large amount of labeled training data and generalize poorly to other tasks. We propose an unsupervised learning framework Path InfoMax (PIM) to learn generic path representations that work for different downstream tasks. We first propose a curriculum negative sampling method, for each input path, to generate a small amount of negative paths, by following the principles of curriculum learning. Next, \emph{PIM} employs mutual information maximization to learn path representations from both a global and a local view. In the global view, PIM distinguishes the representations of the input paths from those of the negative paths. In the local view, \emph{PIM} distinguishes the input path representations from the representations of the nodes that appear only in the negative paths. This enables the learned path representations to encode both global and local information at different scales. Extensive experiments on two downstream tasks, ranking score estimation and travel time estimation, using two road network datasets suggest that PIM significantly outperforms other unsupervised methods and is also able to be used as a pre-training method to enhance supervised path representation learning.
翻译:在各种运输应用中,如在路径建议系统中估计路径排名和在导航系统中估计路径旅行时间等,路径的表示方式至关重要。现有研究往往以监督的方式学习特定任务路径的表示方式,这需要大量的标签培训数据,而且与其他任务相比,情况不尽相同。我们提出一个不受监督的学习框架框架Path Infax(PIM),以学习适合不同下游任务的通用路径表示方式。我们首先建议对每个输入路径采用课程负面抽样方法,以便按照课程学习的原则生成少量的负面路径。接下来,\emph{PIM}采用共同信息最大化的方法,从全球和地方的角度学习路径的表示方式。在全球观点中,PIM将输入路径的表示方式与负面路径的表示方式区分开来。我们首先建议对每个输入路径的表示方式进行负面抽样方法,以便按照课程学习的原则,在不同的尺度上对全球和地方信息进行编码。在下游两个任务上进行广泛的实验,在分数估计和旅行时间估计中进行排序。在全球观点中,PIM将输入路径的表示方式与负面路径的表示方式的表示方法也大大改进。