An influential 1990 paper of Hochbaum and Shanthikumar made it common wisdom that "convex separable optimization is not much harder than linear optimization" [JACM 1990]. We exhibit two fundamental classes of mixed integer (linear) programs that run counter this intuition. Namely those whose constraint matrices have small coefficients and small primal or dual treedepth: While linear optimization is easy [Brand, Kouteck\'y, Ordyniak, AAAI 2021], we prove that separable convex optimization IS much harder. Moreover, in the pure integer and mixed integer linear cases, these two classes have the same parameterized complexity. We show that they yet behave quite differently in the separable convex mixed integer case. Our approach employs the mixed Graver basis introduced by Hemmecke [Math. Prog. 2003]. We give the first non-trivial lower and upper bounds on the norm of mixed Graver basis elements. In previous works involving the integer Graver basis, such upper bounds have consistently resulted in efficient algorithms for integer programming. Curiously, this does not happen in our case. In fact, we even rule out such an algorithm.
翻译:1990年Hoghbaum和Shanthikumar的有影响力的Hoshbaum和Shanthikumar的一篇有影响的1990年论文提供了共同的智慧,即“分解优化不会比线性优化难得多”[JACM 1990]。我们展示了两种与直观相反的混合整数(线性)程序的基本类别。也就是说,那些制约矩阵具有小系数和小原始或双树深度的制约矩阵:虽然线性优化很容易[Brand, Kouteck\'y, Ordyniak, AAAI 2021],但我们证明,分解的精细整数优化难度很大。此外,在纯整数和混合整数线性整数案例中,这两个类别具有相同的参数复杂性。我们显示,在可分解的共和数混合整数组合整数组合整数的组合整数中,它们的行为仍然非常不同。我们的方法采用了Hemmecke[Math. Prog. 2003] 介绍的混合基底基数基础。我们给出了第一个非边际低和上界限的规范。在混合基数基数标准上,在以前涉及整数Graver基础的作品中,这种上界限始终都是有效的算出我们的事实。