An influential 1990 paper of Hochbaum and Shanthikumar made it common wisdom that "convex separable optimization is not much harder than linear optimization" [JACM 1990]. We exhibit two fundamental classes of mixed integer (linear) programs that run counter this intuition. Namely those whose constraint matrices have small coefficients and small primal or dual treedepth: While linear optimization is easy [Brand, Kouteck\'y, Ordyniak, AAAI 2021], we prove that separable convex optimization IS much harder. Moreover, in the pure integer and mixed integer linear cases, these two classes have the same parameterized complexity. We show that they yet behave quite differently in the separable convex mixed integer case. Our approach employs the mixed Graver basis introduced by Hemmecke [Math. Prog. 2003]. We give the first non-trivial lower and upper bounds on the norm of mixed Graver basis elements. In previous works involving the integer Graver basis, such upper bounds have consistently resulted in efficient algorithms for integer programming. Curiously, this does not happen in our case. In fact, we even rule out such an algorithm.


翻译:1990年Hoghbaum和Shanthikumar的有影响力的Hoshbaum和Shanthikumar的一篇有影响的1990年论文提供了共同的智慧,即“分解优化不会比线性优化难得多”[JACM 1990]。我们展示了两种与直观相反的混合整数(线性)程序的基本类别。也就是说,那些制约矩阵具有小系数和小原始或双树深度的制约矩阵:虽然线性优化很容易[Brand, Kouteck\'y, Ordyniak, AAAI 2021],但我们证明,分解的精细整数优化难度很大。此外,在纯整数和混合整数线性整数案例中,这两个类别具有相同的参数复杂性。我们显示,在可分解的共和数混合整数组合整数组合整数的组合整数中,它们的行为仍然非常不同。我们的方法采用了Hemmecke[Math. Prog. 2003] 介绍的混合基底基数基础。我们给出了第一个非边际低和上界限的规范。在混合基数基数标准上,在以前涉及整数Graver基础的作品中,这种上界限始终都是有效的算出我们的事实。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年1月19日
Arxiv
3+阅读 · 2018年1月31日
Arxiv
5+阅读 · 2017年12月14日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员