A recurrent question in climate risk analysis is determining how climate change will affect heavy precipitation patterns. Dividing the globe into homogeneous sub-regions should improve the modelling of heavy precipitation by inferring common regional distributional parameters. In addition, in the detection and attribution (D&A) field, biases due to model errors in global climate models (GCMs) should be considered to attribute the anthropogenic forcing effect. Within this D&A context, we propose an efficient clustering algorithm that, compared to classical regional frequency analysis (RFA) techniques, is covariate-free and accounts for dependence. It is based on a new non-parametric dissimilarity that combines both the RFA constraint and the pairwise dependence. We derive asymptotic properties of our dissimilarity estimator, and we interpret it for generalised extreme value distributed pairs. As a D&A application, we cluster annual daily precipitation maxima of 16 GCMs from the coupled model intercomparison project. We combine the climatologically consistent subregions identified for all GCMs. This improves the spatial clusters coherence and outperforms methods either based on margins or on dependence. Finally, by comparing the natural forcings partition with the one with all forcings, we assess the impact of anthropogenic forcing on precipitation extreme patterns.
翻译:气候风险分析经常出现的问题是确定气候变化将如何影响大量降水模式。将全球分为同一的次区域,通过推算共同的区域分布参数,改进重降量模型的建模;此外,在探测和归因(D&A)领域,全球气候模型模型模型错误的偏差应考虑归因人为强迫效应。在此情况下,我们建议采用高效的组合算法,与传统的区域频率分析(RFA)技术相比,这种算法是无差异的,可以说明依赖性。这种算法应基于一种新的非参数差异性差异,将RFA的制约和对等依赖性结合起来。我们从差异估测和归因(D&A)领域得出我们差异性估算器的零症状特性,我们将其解释为一般化的极端分布配对。作为D&A应用,我们每年将16个全球降雨量最小值组合起来,这与传统的区域频率分析技术相比,是无差异性的,并且说明依赖性。这改善了空间群集的连贯性和异性差异性方法,既结合了RFA限制,也结合了我们根据边际或极端依赖性模式评估了各种压力。最后,将自然灾害与人类间断度分析。