Machine learning algorithms are designed to make accurate predictions of the future based on existing data, while online algorithms seek to bound some performance measure (typically the competitive ratio) without knowledge of the future. Lykouris and Vassilvitskii demonstrated that augmenting online algorithms with a machine learned predictor can provably decrease the competitive ratio under as long as the predictor is suitably accurate. In this work we apply this idea to the Online Metrical Task System problem, which was put forth by Borodin, Linial, and Saks as a general model for dynamic systems processing tasks in an online fashion. We focus on the specific class of uniform task systems on $n$ tasks, for which the best deterministic algorithm is $O(n)$ competitive and the best randomized algorithm is $O(\log n)$ competitive. By giving an online algorithms access to a machine learned oracle with absolute predictive error bounded above by $\eta_0$, we construct a $\Theta(\min(\sqrt{\eta_0}, \log n))$ competitive algorithm for the uniform case of the metrical task systems problem. We also give a $\Theta(\log \eta_0)$ lower bound on the competitive ratio of any randomized algorithm.
翻译:机器学习算法的设计是为了根据现有数据准确预测未来,而在线算法则则试图将某些绩效计量(通常是竞争比率)约束在不了解未来的情况下。 Lykouris 和 Vassilvitskii 证明,只要预测器正确准确,使用机器学习预测器增强在线算法可以降低竞争比率。在这项工作中,我们将这一理念应用于由Borodin、Linial和Saks提出的在线气象任务系统问题,这是动态系统处理任务的一种通用模型。我们侧重于统一任务系统的具体类别,其具体任务为美元,而最佳的确定式算法是美元(n),而最佳随机算法则是美元(n),其最佳随机化算法是美元(n),其竞争性比率是美元(n),只要预测器正确准确无误。通过让在线算法访问一个绝对预测错误在$\eta_0美元之上的机器,我们用一个$\Theta (\\qr) (\qr_etat_0}(nlog n)作为在线系统处理任务处理任务的一般模式的一般模型。我们用一个价格的竞争性运算算算算算法, 任何标准。