Machine learning algorithms are designed to make accurate predictions of the future based on existing data, while online algorithms seek to bound some performance measure (typically the competitive ratio) without knowledge of the future. Lykouris and Vassilvitskii demonstrated that augmenting online algorithms with a machine learned predictor can provably decrease the competitive ratio under as long as the predictor is suitably accurate. In this work we apply this idea to the Online Metrical Task System problem, which was put forth by Borodin, Linial, and Saks as a general model for dynamic systems processing tasks in an online fashion. We focus on the specific class of uniform task systems on $n$ tasks, for which the best deterministic algorithm is $O(n)$ competitive and the best randomized algorithm is $O(\log n)$ competitive. By giving an online algorithms access to a machine learned oracle with absolute predictive error bounded above by $\eta_0$, we construct a $\Theta(\min(\sqrt{\eta_0}, \log n))$ competitive algorithm for the uniform case of the metrical task systems problem. We also give a $\Theta(\log \eta_0)$ lower bound on the competitive ratio of any randomized algorithm.


翻译:机器学习算法的设计是为了根据现有数据准确预测未来,而在线算法则则试图将某些绩效计量(通常是竞争比率)约束在不了解未来的情况下。 Lykouris 和 Vassilvitskii 证明,只要预测器正确准确,使用机器学习预测器增强在线算法可以降低竞争比率。在这项工作中,我们将这一理念应用于由Borodin、Linial和Saks提出的在线气象任务系统问题,这是动态系统处理任务的一种通用模型。我们侧重于统一任务系统的具体类别,其具体任务为美元,而最佳的确定式算法是美元(n),而最佳随机算法则是美元(n),其最佳随机化算法是美元(n),其竞争性比率是美元(n),只要预测器正确准确无误。通过让在线算法访问一个绝对预测错误在$\eta_0美元之上的机器,我们用一个$\Theta (\\qr) (\qr_etat_0}(nlog n)作为在线系统处理任务处理任务的一般模式的一般模型。我们用一个价格的竞争性运算算算算算法, 任何标准。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
【干货书】机器人元素Elements of Robotics ,311页pdf
专知会员服务
36+阅读 · 2021年4月16日
专知会员服务
40+阅读 · 2020年9月6日
专知会员服务
117+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
10+阅读 · 2021年11月3日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
0+阅读 · 2021年11月19日
Arxiv
10+阅读 · 2021年11月3日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
8+阅读 · 2018年5月15日
Top
微信扫码咨询专知VIP会员