The insertion-deletion codes were motivated to correct the synchronization errors. In this paper we prove several coordinate-ordering-free upper bounds on the insdel distances of linear codes, which are based on the generalized Hamming weights and the formation of minimum Hamming weight codewords. Our bounds are stronger than some previous known bounds. We apply these upper bounds to some cyclic codes and one algebraic-geometric code with any rearrangement of coordinate positions. Some strong upper bounds on the insdel distances of Reed-Muller codes with special coordinate-ordering are also given.
翻译:插入删除代码的动机是纠正同步错误。 在本文中, 我们证明在线性代码的内侧距离上有几个无协调顺序的上界, 线性代码基于普遍含重重量和最小含重重量编码的形成。 我们的界限比以前已知的界限要强。 我们将这些上界适用于某些循环代码, 以及一个具有任何协调位置重新排列的代数- 测重码。 在 Reed- Muller 代码的内侧距离上界也给出了带有特殊协调顺序的强上界 。