Event extraction (EE) aims to identify structured events, including event triggers and their corresponding arguments, from unstructured text. Most of the existing works rely on a large number of labeled instances to train models, while the labeled data could be expensive to be obtained. In this work, we present a data-efficient event extraction method by formulating event extraction as a natural language generation problem. The formulation allows us to inject knowledge of label semantics, event structure, and output dependencies into the model. Given a passage and an event type, our model learns to summarize this passage into a templated sentence in a predefined structure. The template is event-type-specific, manually created, and contains event trigger and argument information. Lastly, a rule-based algorithm is used to derive the trigger and argument predictions from the generated sentence. Our method inherently enjoys the following benefits: (1) The pretraining of the generative language models help incorporate the semantics of the labels for generative EE. (2) The autoregressive generation process and our end-to-end design for extracting triggers and arguments force the model to capture the dependencies among the output triggers and their arguments. (3) The predefined templates form concrete yet flexible rules to hint the models about the valid patterns for each event type, reducing the models' burden to learn structures from the data. Empirical results show that our model achieves superior performance over strong baselines on EE tasks in the low data regime and achieves competitive results to the current state-of-the-art when more data becomes available.
翻译:事件提取 (EE) 旨在从非结构化文本中识别结构化事件, 包括事件触发器及其相应的参数。 大部分现有工程都依赖于大量标签化实例来培训模型, 而标签化数据可能非常昂贵 。 在这项工作中, 我们提出数据高效事件提取方法, 将事件提取作为自然语言生成问题 。 配方让我们在模型中注入标签语义、 事件结构和产出依赖性的知识 。 在一段段落和事件类型中, 我们的模型学会在预设结构中将这一段落总结为模板化句。 模板是针对事件类型的、 手工创建的, 并包含事件触发和争论信息 。 最后, 我们使用基于规则的算法从生成的句子中得出触发和论证的触发和论证。 我们的方法固有的好处是:(1) 基因化语言模型的预培训有助于将低等级标签的语义化 EE 。 (2) 自动递增生成过程以及我们现有的州至州级设计, 用于在预定义结构中提取触发和争论模型, 迫使模型在确定型号中获取当前弹性型号的弹性型号中, 将数据转换为驱动式数据模型, 。