Event extraction (EE) aims to identify structured events, including event triggers and their corresponding arguments, from unstructured text. Most of the existing works rely on a large number of labeled instances to train models, while the labeled data could be expensive to be obtained. In this work, we present a data-efficient event extraction method by formulating event extraction as a natural language generation problem. The formulation allows us to inject knowledge of label semantics, event structure, and output dependencies into the model. Given a passage and an event type, our model learns to summarize this passage into a templated sentence in a predefined structure. The template is event-type-specific, manually created, and contains event trigger and argument information. Lastly, a rule-based algorithm is used to derive the trigger and argument predictions from the generated sentence. Our method inherently enjoys the following benefits: (1) The pretraining of the generative language models help incorporate the semantics of the labels for generative EE. (2) The autoregressive generation process and our end-to-end design for extracting triggers and arguments force the model to capture the dependencies among the output triggers and their arguments. (3) The predefined templates form concrete yet flexible rules to hint the models about the valid patterns for each event type, reducing the models' burden to learn structures from the data. Empirical results show that our model achieves superior performance over strong baselines on EE tasks in the low data regime and achieves competitive results to the current state-of-the-art when more data becomes available.


翻译:事件提取 (EE) 旨在从非结构化文本中识别结构化事件, 包括事件触发器及其相应的参数。 大部分现有工程都依赖于大量标签化实例来培训模型, 而标签化数据可能非常昂贵 。 在这项工作中, 我们提出数据高效事件提取方法, 将事件提取作为自然语言生成问题 。 配方让我们在模型中注入标签语义、 事件结构和产出依赖性的知识 。 在一段段落和事件类型中, 我们的模型学会在预设结构中将这一段落总结为模板化句。 模板是针对事件类型的、 手工创建的, 并包含事件触发和争论信息 。 最后, 我们使用基于规则的算法从生成的句子中得出触发和论证的触发和论证。 我们的方法固有的好处是:(1) 基因化语言模型的预培训有助于将低等级标签的语义化 EE 。 (2) 自动递增生成过程以及我们现有的州至州级设计, 用于在预定义结构中提取触发和争论模型, 迫使模型在确定型号中获取当前弹性型号的弹性型号中, 将数据转换为驱动式数据模型, 。

1
下载
关闭预览

相关内容

事件抽取指的是从非结构化文本中抽取事件信息,并将其以结构化形式呈现出来的任务。例如从“毛泽东1893 年出生于湖南湘潭”这句话中抽取事件{类型:出生,人物:毛泽东,时间:1893 年,出生地:湖南湘潭}。 事件抽取任务通常包含事件类型识别和事件元素填充两个子任务。
专知会员服务
35+阅读 · 2021年8月19日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
19+阅读 · 2019年10月9日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
论文浅尝 | Zero-Shot Transfer Learning for Event Extraction
开放知识图谱
26+阅读 · 2018年11月1日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
论文浅尝 | Distant Supervision for Relation Extraction
开放知识图谱
4+阅读 · 2017年12月25日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Rapid Customization for Event Extraction
Arxiv
7+阅读 · 2018年9月20日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
论文浅尝 | Zero-Shot Transfer Learning for Event Extraction
开放知识图谱
26+阅读 · 2018年11月1日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
论文浅尝 | Distant Supervision for Relation Extraction
开放知识图谱
4+阅读 · 2017年12月25日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员