Text-to-Image models have introduced a remarkable leap in the evolution of machine learning, demonstrating high-quality synthesis of images from a given text-prompt. However, these powerful pretrained models still lack control handles that can guide spatial properties of the synthesized images. In this work, we introduce a universal approach to guide a pretrained text-to-image diffusion model, with a spatial map from another domain (e.g., sketch) during inference time. Unlike previous works, our method does not require to train a dedicated model or a specialized encoder for the task. Our key idea is to train a Latent Guidance Predictor (LGP) - a small, per-pixel, Multi-Layer Perceptron (MLP) that maps latent features of noisy images to spatial maps, where the deep features are extracted from the core Denoising Diffusion Probabilistic Model (DDPM) network. The LGP is trained only on a few thousand images and constitutes a differential guiding map predictor, over which the loss is computed and propagated back to push the intermediate images to agree with the spatial map. The per-pixel training offers flexibility and locality which allows the technique to perform well on out-of-domain sketches, including free-hand style drawings. We take a particular focus on the sketch-to-image translation task, revealing a robust and expressive way to generate images that follow the guidance of a sketch of arbitrary style or domain. Project page: sketch-guided-diffusion.github.io


翻译:文本到图像模型在机器学习的进化中引入了惊人的飞跃, 展示了对特定文本提示的图像进行高质量的合成。 然而, 这些强大的预设模型仍然缺乏能够指导合成图像空间属性的控制控控控控控控控控控控控控控控控控控控控。 在这项工作中, 我们引入了一种通用方法来指导预设的文本到图像扩散模型, 在推断时使用来自另一个领域( 如草图) 的空间地图。 与以前的工作不同, 我们的方法并不需要为任务培训一个专门的模型或专门的编码。 我们的关键理念是培训一个高级指导直流直线描述( LGP) - 一个小的、 半像素控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控控, 具体地平面的直路路图判算法, 、 向平面判定直控控控控控路、 、 直路路路路、 、 、 路路路、 、 、 向、 路路路路、 向、 、 向、 向、 向、 向、 向、 向、 向下路路路路路路路、 向、 、 向、 、 向、 向、 向、 向、 、 、 、 向、 向、 、 、 向、 向、 、 、 、 向、 、 、 向、 向、 向、 向、 向、 向、 向、 向、 向、 向、 、 、 、 向、 、 、 、 、 、 、 、 向、 、 、 、 、 、 、 、 、 、 向、 、 向、 向、 向、 向、 、 、 、 、 、 、 、 、 、 、 、 向、 向、 、 、 、 、 、 、 、 、 、 、 、 、 、

1
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月25日
Arxiv
44+阅读 · 2022年9月6日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员