I introduce renaming-enriched sets (rensets for short), which are algebraic structures axiomatizing fundamental properties of renaming (also known as variable-for-variable substitution) on syntax with bindings. Rensets compare favorably in some respects with the well-known foundation based on nominal sets. In particular, renaming is a more fundamental operator than the nominal swapping operator and enjoys a simpler, equationally expressed relationship with the variable freshness predicate. Together with some natural axioms matching properties of the syntactic constructors, rensets yield a truly minimalistic characterization of lambda-calculus terms as an abstract datatype -- the first one in the literature that involves a recursively enumerable set of unconditional equations, referring only to the most fundamental term operators: the constructors and renaming. This characterization yields a recursion principle, which (similarly to the case of nominal sets) can be improved by incorporating Barendregt's variable convention. When interpreting syntax in semantic domains, my renaming-based recursor is easier to deploy than the nominal recursor. My results have been validated with the proof assistant Isabelle/HOL.
翻译:我引入了重命名增加的套件(变换短), 它们是代数结构, 将重命名的基本特性( 也称为可变等量替代) 与装订符的语法相对应。 重命名在某些方面优于以名义套件为基础的众所周知的基础。 特别是, 重命名是一个比名义互换操作员更基本的基本操作员, 并且享有与可变新鲜性上游更简单、 方程式表达的关系 。 与一些与合成构件特性相对应的自然正数一起, 重新命名产生对羊羔- 计算法术语的抽象数据类型真正最小化的定性( 也称为可变等数替代 ) 。 在文献中, 第一次涉及循环性可变无条件方程式的一组, 仅指最基本的运算符: 构建者和重命名操作员。 此定性产生一种递归原则, 通过纳入 Barendregt 的变式常规, 可以改进该原则( 类似于名义套件的情况 ) 。 在解释语义域的合成时, 我的重新命名/ 校验/ 校验/ 将 我的变式 校验的校验结果比 更容易。