Real-world knowledge graphs (KG) are mostly incomplete. The problem of recovering missing relations, called KG completion, has recently become an active research area. Knowledge graph (KG) embedding, a low-dimensional representation of entities and relations, is the crucial technique for KG completion. Convolutional neural networks in models such as ConvE, SACN, InteractE, and RGCN achieve recent successes. This paper takes a different architectural view and proposes ComDensE which combines relation-aware and common features using dense neural networks. In the relation-aware feature extraction, we attempt to create relational inductive bias by applying an encoding function specific to each relation. In the common feature extraction, we apply the common encoding function to all input embeddings. These encoding functions are implemented using dense layers in ComDensE. ComDensE achieves the state-of-the-art performance in the link prediction in terms of MRR, HIT@1 on FB15k-237 and HIT@1 on WN18RR compared to the previous baseline approaches. We conduct an extensive ablation study to examine the effects of the relation-aware layer and the common layer of the ComDensE. Experimental results illustrate that the combined dense architecture as implemented in ComDensE achieves the best performance.
翻译:现实世界知识图(KG)大多不完全。 恢复缺失关系的问题,称为KG完成,最近已成为一个活跃的研究领域。知识图(KG)嵌入(KG)是KG完成的关键技术。ConvE、SACN、InteractE和RGCN等模型中的进化神经网络最近取得了成功。本文件采用了不同的建筑观点,并提出了利用浓密神经网络将关系认知和共同特征结合起来的ComDensE 。在关系特征提取中,我们试图通过对每种关系应用一个特定的编码功能来建立关系诱导偏差。在共同特征提取中,我们对所有投入嵌入应用共同编码功能。这些编码功能是使用Conve E、SACN、InteractE、InteractE和RGCN等模型中的稠密层来实施的。ComDensE在MRR、HIT@1、FB15k-237和HIT@1方面,在WN18RRRM上与以前的基线方法相比,我们试图通过应用一个特定的编码功能偏差。我们在共同特征提取中应用共同编码提取时,用共同编码功能来应用共同编码功能来执行这些编码的编码的编码功能。我们进行一项广泛的实验研究,以研究,以研究。在ComDIBDIBABABABD结构中,以研究,以研究实现共同的中央层中取得最深层中取得最佳的业绩结果。