We propose a simple yet effective proposal-free architecture for lidar panoptic segmentation. We jointly optimize both semantic segmentation and class-agnostic instance classification in a single network using a pillar-based bird's-eye view representation. The instance classification head learns pairwise affinity between pillars to determine whether the pillars belong to the same instance or not. We further propose a local clustering algorithm to propagate instance ids by merging semantic segmentation and affinity predictions. Our experiments on nuScenes dataset show that our approach outperforms previous proposal-free methods and is comparable to proposal-based methods which requires extra annotation from object detection.
翻译:我们提出了一个简单而有效的无建议光谱分割结构。 我们共同优化了单一网络中的语义分割和分类- 不可知实例分类, 使用基于柱形鸟眼的视图表达方式。 实例分类头学习了支柱之间的双向亲近关系, 以确定支柱是否属于同一实例。 我们进一步提出本地群集算法, 将语义分割和亲近性预测结合起来, 以传播实例标识。 我们对核星数据集的实验显示, 我们的方法优于先前的无建议方法, 并且与基于建议的方法相似, 后者要求从对象检测中进行额外批注。