The literature on treatment choice focuses on the mean of welfare regret. Ignoring other features of the regret distribution, however, can lead to an undesirable rule that suffers from a high chance of welfare loss due to sampling uncertainty. We propose to minimize the mean of a nonlinear transformation of welfare regret. This paradigm shift alters optimal rules drastically. We show that for a wide class of nonlinear criteria, admissible rules are fractional. Focusing on mean square regret, we derive the closed-form probabilities of randomization for finite-sample Bayes and minimax optimal rules when data are normal with known variance. The minimax optimal rule is a simple logit based on the sample mean and agrees with the posterior probability for positive treatment effect under the least favorable prior. The Bayes optimal rule with an uninformative prior is different but produces quantitatively comparable mean square regret. We extend these results to limit experiments and discuss our findings through sample size calculations.


翻译:有关治疗选择的文献侧重于福利遗憾的平均值。然而,忽视遗憾分布的其他特征可能导致一种不受欢迎的规则,由于抽样不确定性,福利损失的可能性很高。我们提议尽量减少福利遗憾的非线性转变的平均值。这种范式转变极大地改变了最佳规则。我们显示,对于广泛的非线性标准类别,可接受规则是零散的。我们注重平均平方遗憾,在数据正常且已知差异正常时,我们得出有限抽样湾和小型最大最佳规则的封闭形式随机化概率。小型最大最佳规则是基于抽样平均值的简单日志,并赞同在最不有利之前在事后产生积极治疗效果的概率。贝斯最优规则与以前非线性规则不同,但产生数量上相当的中值遗憾。我们将这些结果扩大到限制试验,并通过抽样规模计算来讨论我们的调查结果。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年9月15日
Arxiv
0+阅读 · 2022年9月15日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员