The literature on treatment choice focuses on the mean of welfare regret. Ignoring other features of the regret distribution, however, can lead to an undesirable rule that suffers from a high chance of welfare loss due to sampling uncertainty. We propose to minimize the mean of a nonlinear transformation of welfare regret. This paradigm shift alters optimal rules drastically. We show that for a wide class of nonlinear criteria, admissible rules are fractional. Focusing on mean square regret, we derive the closed-form probabilities of randomization for finite-sample Bayes and minimax optimal rules when data are normal with known variance. The minimax optimal rule is a simple logit based on the sample mean and agrees with the posterior probability for positive treatment effect under the least favorable prior. The Bayes optimal rule with an uninformative prior is different but produces quantitatively comparable mean square regret. We extend these results to limit experiments and discuss our findings through sample size calculations.
翻译:有关治疗选择的文献侧重于福利遗憾的平均值。然而,忽视遗憾分布的其他特征可能导致一种不受欢迎的规则,由于抽样不确定性,福利损失的可能性很高。我们提议尽量减少福利遗憾的非线性转变的平均值。这种范式转变极大地改变了最佳规则。我们显示,对于广泛的非线性标准类别,可接受规则是零散的。我们注重平均平方遗憾,在数据正常且已知差异正常时,我们得出有限抽样湾和小型最大最佳规则的封闭形式随机化概率。小型最大最佳规则是基于抽样平均值的简单日志,并赞同在最不有利之前在事后产生积极治疗效果的概率。贝斯最优规则与以前非线性规则不同,但产生数量上相当的中值遗憾。我们将这些结果扩大到限制试验,并通过抽样规模计算来讨论我们的调查结果。