Accurate uncertainty quantification is necessary to enhance the reliability of deep learning models in real-world applications. In the case of regression tasks, prediction intervals (PIs) should be provided along with the deterministic predictions of deep learning models. Such PIs are useful or "high-quality'' as long as they are sufficiently narrow and capture most of the probability density. In this paper, we present a method to learn prediction intervals for regression-based neural networks automatically in addition to the conventional target predictions. In particular, we train two companion neural networks: one that uses one output, the target estimate, and another that uses two outputs, the upper and lower bounds of the corresponding PI. Our main contribution is the design of a loss function for the PI-generation network that takes into account the output of the target-estimation network and has two optimization objectives: minimizing the mean prediction interval width and ensuring the PI integrity using constraints that maximize the prediction interval probability coverage implicitly. Both objectives are balanced within the loss function using a self-adaptive coefficient. Furthermore, we apply a Monte Carlo-based approach that evaluates the model uncertainty in the learned PIs. Experiments using a synthetic dataset, six benchmark datasets, and a real-world crop yield prediction dataset showed that our method was able to maintain a nominal probability coverage and produce narrower PIs without detriment to its target estimation accuracy when compared to those PIs generated by three state-of-the-art neural-network-based methods.
翻译:准确的不确定性量化对于提高真实世界应用中深层学习模型的可靠性是必要的。 在回归任务中,应提供预测间隔(PIS),同时提供深深层学习模型的确定性预测。只要这种预测间隔足够狭窄,并能捕捉到大部分概率密度,这种预测间隔是有用的或“高质量”的。在本文中,我们提出了一个方法,除了常规目标预测之外,还可以自动学习回归神经网络的预测间隔。特别是,我们培训两个伴生神经网络:一个使用一个产出,目标估计,另一个使用两个产出,即相应的PI的上下限。我们的主要贡献是设计PI生成网络的损失函数,该功能应考虑到目标估计网络的输出,并且具有两个优化目标:将平均预测间隔宽度最小化,并且使用最大限度地扩大预测间隔概率的制约确保PII的完整性。这两个目标在损失函数中都使用自我调整系数。此外,我们采用了基于蒙特卡洛的计算方法,在不评估模型的准确度上下限值,即相应的PI的上下限值范围。我们的主要贡献是设计PI的模型的概率范围,然后用一个合成的模型数据,然后用精确的精确度数据,然后用一个模拟的精确的模型,然后用一个模拟数据显示的精确的精确的精确的模型,然后用模型,然后用模型的模型的精确的精确度数据。