This paper details the theory and implementation behind practically ensuring safety of remotely piloted racing drones. We demonstrate robust and practical safety guarantees on a 7" racing drone at speeds exceeding 100 km/h, utilizing only online computations on a 10 gram micro-controller. To achieve this goal, we utilize the framework of control barrier functions (CBFs) which give guaranteed safety encoded as forward set invariance. To make this methodology practically applicable, we present an implicitly defined CBF which leverages backup controllers to enable gradient-free evaluations that ensure safety. The method applied to hardware results in smooth, minimally conservative alterations of the pilots' desired inputs, enabling them to push the limits of their drone without fear of crashing. Moreover, the method works in conjunction with the preexisting flight controller, resulting in unaltered flight when there are no nearby safety risks. Additional benefits include safety and stability of the drone when losing line-of-sight or in the event of radio failure.
翻译:本文详细介绍了实际确保遥控赛车无人驾驶飞机安全的理论和实施。 我们展示了对速度超过100公里/小时的7号赛车无人驾驶飞机的强力和实际安全保障,只使用10克微控制器的在线计算。为了实现这一目标,我们使用了控制屏障功能框架(CBFs),这种屏障功能保证了安全,并编码为前方变数。为了使这种方法切实适用,我们提出了一个隐含定义的CBF,利用备份控制器进行梯度无梯度评价,以确保安全。该方法适用于硬件,其结果是对飞行员想要的投入进行平稳、最保守的修改,使其能够推动无人驾驶飞机的极限,而不必担心坠毁。此外,该方法与先前存在的飞行控制器一起工作,在附近没有安全风险时导致无变的飞行。其他好处包括当无人机失去视线或无线电失灵时,无人机的安全和稳定。