This paper presents a new mechanism for producing sanitized statistical summaries that achieve \emph{differential privacy}, called the \emph{K-Norm Gradient} Mechanism, or KNG. This new approach maintains the strong flexibility of the exponential mechanism, while achieving the powerful utility performance of objective perturbation. KNG starts with an inherent objective function (often an empirical risk), and promotes summaries that are close to minimizing the objective by weighting according to how far the gradient of the objective function is from zero. Working with the gradient instead of the original objective function allows for additional flexibility as one can penalize using different norms. We show that, unlike the exponential mechanism, the noise added by KNG is asymptotically negligible compared to the statistical error for many problems. In addition to theoretical guarantees on privacy and utility, we confirm the utility of KNG empirically in the settings of linear and quantile regression through simulations.


翻译:本文介绍了一种新机制,用于编制清洁统计摘要,实现\ emph{K- Norm Gradient} 机制或KNG。 这种新办法保持了指数机制的强大灵活性,同时实现了目标扰动的强大效用。 KNG从一个内在的客观功能(通常是经验风险)开始,并提倡根据目标函数的梯度从零到零的权重来尽量缩小目标的汇总。与梯度而不是最初的目标功能合作,可以增加灵活性,因为使用不同的规范来惩罚人。我们表明,与指数机制不同,KNG添加的噪音与许多问题的统计错误相比,微不足道。除了对隐私和效用的理论保障外,我们还确认KNG在通过模拟进行线性和孔地回归的情况下的经验作用。

0
下载
关闭预览

相关内容

我们给定x,函数都会输出一个f(X),这个输出的f(X)与真实值Y可能是相同的,也可能是不同的,为了表示拟合的好坏,就用一个函数来度量拟合的程度。这个函数就称为损失函数(loss function),或者叫代价函数(cost function)
专知会员服务
20+阅读 · 2021年8月17日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月1日
Arxiv
0+阅读 · 2021年9月30日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员