Accurate survival prediction is crucial for development of precision cancer medicine, creating the need for new sources of prognostic information. Recently, there has been significant interest in exploiting routinely collected clinical and medical imaging data to discover new prognostic markers in multiple cancer types. However, most of the previous studies focus on individual data modalities alone and do not make use of recent advances in machine learning for survival prediction. We present Deep-CR MTLR -- a novel machine learning approach for accurate cancer survival prediction from multi-modal clinical and imaging data in the presence of competing risks based on neural networks and an extension of the multi-task logistic regression framework. We demonstrate improved prognostic performance of the multi-modal approach over single modality predictors in a cohort of 2552 head and neck cancer patients, particularly for cancer specific survival, where our approach achieves 2-year AUROC of 0.774 and $C$-index of 0.788.
翻译:准确的存活预测对于发展精准癌症医学至关重要,这就需要新的预测性信息来源。最近,人们对利用常规收集的临床和医学成像数据发现多种癌症类型的新预测性标记非常感兴趣。然而,以往的大多数研究仅侧重于个别数据模式,而没有利用机器学习的最新进展来进行生存预测。我们介绍了深氯CR MTLR -- -- 一种新型机器学习方法,用于在神经网络和多任务物流回归框架扩展等相互竞争的风险下,从多模式临床和成像数据中准确预测癌症存活性预测性预测。我们展示了2552个头部和颈部癌症患者组群中多模式方法对单一模式预测性指标的预测性能得到改善,特别是针对特定癌症生存情况,我们的方法是达到2年的AUROC0.774和0.788 $C-index。