We investigate the extent to which verb alternation classes, as described by Levin (1993), are encoded in the embeddings of Large Pre-trained Language Models (PLMs) such as BERT, RoBERTa, ELECTRA, and DeBERTa using selectively constructed diagnostic classifiers for word and sentence-level prediction tasks. We follow and expand upon the experiments of Kann et al. (2019), which aim to probe whether static embeddings encode frame-selectional properties of verbs. At both the word and sentence level, we find that contextual embeddings from PLMs not only outperform non-contextual embeddings, but achieve astonishingly high accuracies on tasks across most alternation classes. Additionally, we find evidence that the middle-to-upper layers of PLMs achieve better performance on average than the lower layers across all probing tasks.
翻译:我们调查了Levin(1993年)所描述的动词变换类在多大程度上被编入大型预先培训语言模型(PLMs),如BERT、ROBERTA、ELECTRA和DeBERTA等大型语言模型(PLMs)的嵌入中,使用有选择的诊断分类方法进行文字和判决一级的预测任务。我们跟踪并扩展了Kann等人(2019年)的实验,该实验旨在调查静态嵌入是否将动词动词的框架选择特性编码。在词和句两个层面,我们发现PLMS的环境嵌入不仅超越了非文字化嵌入,而且在大多数交替类的任务上取得了惊人的高超常的精度。此外,我们发现有证据表明,中层至上层PLMs的平均性能优于所有研究任务的下层。