A graph $G=(V,E)$ is called a pairwise compatibility graph (PCG) if there exists an edge-weighted tree $T$ and two non-negative real numbers $d_{min}$ and $d_{max}$ such that each leaf $u$ of $T$ corresponds to a vertex $u \in V$ and there is an edge $(u, v) \in E$ if and only if $d_{min} \leq d_{T}(u, v) \leq d_{max}$, where $d_T(u, v)$ is the sum of the weights of the edges on the unique path from $u$ to $v$ in $T$. The tree $T$ is called the pairwise compatibility tree (PCT) of $G$. It has been proven that not all graphs are PCGs. Thus, it is interesting to know which classes of graphs are PCGs. In this paper, we prove that grid graphs are PCGs. Although there are a necessary condition and a sufficient condition known for a graph being a PCG, there are some classes of graphs that are intermediate to the classes defined by the necessary condition and the sufficient condition. In this paper, we show two examples of graphs that are included in these intermediate classes and prove that they are not PCGs.


翻译:$G = (V, E) 美元 图形 = $G = (V, E) 美元 如果存在边边加权树 $T $T 和 2 非负正正数 $d ⁇ min} 美元和 $d ⁇ max} 美元, 则每叶美元对应一个顶点 $u 美元 = (V, E) 美元, 如果只有 $d ⁇ min}\ leq d ⁇ T} (u, v) = leq d ⁇ max} $, 就有双对称 $T = 美元 美元 和 $ d ⁇ max $ 美元 和 $ $ d ⁇ max 美元 美元 。 树 $T$ = = 美元 美元 等于 美元 美元 的顶点和 美元 美元 美元, 美元 = $( u, u, v) $, $, $, $, $, $ = $ $, $ $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $,

0
下载
关闭预览

相关内容

专知会员服务
18+阅读 · 2020年9月6日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月29日
Arxiv
0+阅读 · 2022年6月26日
Arxiv
0+阅读 · 2022年6月24日
Arxiv
0+阅读 · 2022年6月24日
Arxiv
0+阅读 · 2022年6月24日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员